Solid Edge — Siemens PLM Software

.NET Programmer’s Guide
Solid Edge with Synchronous Technology API

Table of Contents

Introduction

CHAPTER 1 - INTRODUCTION - mm oo oo e 8
Who Should Read This Book 8
Visual Basic 6.0 Users 8
Software Requirements 9

CHAPTER 2 - API OVERVIEW === ssmmmmmmmmoo oo 10

Solid Edge Core Type Libraries 11
Table of core APIs 11
SolidEdgeFramework Type Library (framewrk.tlb) 12
SolidEdgeFrameworkSupport Type Library (fwksupp.tlb) 12
SolidEdgePart Type Library (part.tlb) 12
SolidEdgeGeometry Type Library (geometry.tlb) 12
SolidEdgeAssembly Type Library (assembly.tlb) 12
SolidEdgeDraft Type Library (draft.tlb) 12
SolidEdgeConstants Type Library (constant.tlb) 12

Solid Edge Utility APIs 13
Table of utility APIs 13
SElnstallDataLib (SEInstallData.dll) 14
SolidEdgeFileProperties (PropAuto.dll) 14
RevisionManager (RevMgr.tlb) 14

CHAPTER 3 - .NET OVERVIEW ----seemmmmmmmmmmmms s smmmmm oo 15

Terminology 16
Application Domain 16
Assembly 16
COM Interop 16
Garbage Collection 16
Interop Assemblies 16
Marshal Class 16
Runtime Callable Wrapper (RCW) 17

CHAPTER 4 - GETTING STARTED -------sssssssssrrrarsrassasasssssssssssssssssssssssssseeeseeeas 18

Your first macro 19
Create a new Visual Basic .NET project 19
Adding a reference to Solid Edge API 19
Viewing Interop Assembly References 21
Connecting to Solid Edge (Visual Basic.NET) 24
Connecting to Solid Edge (C#) 24

Introduction

Starting Solid Edge (Visual Basic .NET) 25
Starting Solid Edge (C#) 25
Working with Documents 27
Table of document Proglds 27
Creating Documents Example (Visual Basic.NET) 27
Creating Documents Example (C#) 28
Determining Document Type Example (Visual Basic.NET) 30
Determining Document Type Example (C#) 32
CHAPTER 5 - UNITS OF MEASURE-------- - oo e e 34
Internal Units 35
Working with Units of Measure 36
Formatting and Displaying Units (Visual Basic.NET) 36
Formatting and Displaying Units (C#) 37
CHAPTER 6 - PART AND SHEET METAL DOCUMENTS ------==nnnnnnnn e 40
Models Collection 40
Model Object 40
Reference Planes 40
Profiles 40
Modeling Coordinate System 41
2D Geometry 41
2D Relationships 41
Variables 42
Part Modeling Examples 44
Modeling a Part (Visual Basic .NET) 44
Modeling a Part (C#) 47
Variables Examples 53
Variable Table Example(Visual Basic .NET) 53
Variable Table Example(C#) 54
Working with Dimensions—Overview 56
Linear Dimensions 56
Radial Dimensions 56
Angular Dimensions 56
Placing Dimensions 57
Placing Dimensions Example (Visual Basic .NET) 57
Placing Dimensions Example (C#) 60
Dimensions via Variables 64

Accessing Dimensions through the Variable Table (Visual Basic .NET) 64

Introduction _

67

Accessing Dimensions through the Variable Table (C#)

CHAPTER 7 - ASSEMBLIES DOCUMENTS --------xsnnnnnesennnneeas

Reference Axes

72

Creating Reference Elements (Visual Basic .NET)

72
74

Creating Reference Elements (C#)

Occurrences

76

77

Adding a new Occurrence (Visual Basic .NET)

78

Adding a new Occurrence (C#)

Manipulating Occurrences (Visual Basic .NET)

80
82

Manipulating Occurrences (C#)

References

86
86

Analyzing Existing Assembly Relationships
Analyzing Existing Assembly Relationships (Visual Basic .NET)

87

Analyzing Existing Assembly Relationships (C#)

88
90

Adding New Assembly Relationships

92

Adding New Assembly Relationships (Visual Basic .NET)
Adding New Assembly Relationships (C#)

96

CHAPTER 8 - DRAFT DOCUMENTS - -------x=scnnsessmmmmeraannmneeas

Sections and Sheets

102

102

Sections and Sheets Example (Visual Basic .NET)

Sections and Sheets Example (C#)

SmartFrames

104

107

Linking and Embedding Example (Visual Basic .NET)

107
109

Linking and Embedding Example (C#)

111

Symbols

111

Symbols Example (Visual Basic .NET)

114

Symbols Example (C#)

117

DrawingViews

117

DrawingViews Example (Visual Basic .NET)

DrawingViews Example (C#)

CHAPTER 9 - HANDLING EVENTS ----s--nsexsnmmmessanmmmesaannnneeas

119

123

Application Events

Table of Application Events

123
123

Sinking Application Events (Visual Basic.NET)

124

Sinking Application Events (C#)

Introduction

Application Window Events 126
Table of Application Window Events 126
Sinking Application Window Events (Visual Basic.NET) 126
Sinking Application Window Events (C#) 127

Document Events 129
Table of Document Events 129
Sinking Document Events (Visual Basic.NET) 129
Sinking Document Events (C#) 130

File Ul Events 132
Table of File Ul Events 132
Sinking File Ul Events (Visual Basic.NET) 132
Sinking File Ul Events (C#) 133

View Events 135
Table of View Events 135
Sinking View Events (Visual Basic.NET) 135
Sinking View Events (Visual Basic.NET) 136

Display Events 138
Table of Display Events 138
Sinking Display Events (Visual Basic.NET) 138
Sinking Display Events (C#) 140

GL Display Events 142
Table of GL Display Events 142
Sinking GL Display Events (Visual Basic.NET) 142
Sinking GL Display Events (C#) 144

CHAPTER 10 - FILE PROPERTIES ---------= oo oo oo 147
Table of File Properties 147

SolidEdgeFramework API 149
Reading File Properties (Visual Basic.NET) 149
Reading File Properties (C#) 150
Working with Custom Properties (Visual Basic.NET) 152
Working with Custom Properties (C#) 153

SolidEdgeFileProperties API 155
Reading File Properties (Visual Basic.NET) 155
Reading File Properties (C#) 156
Working with Custom Properties (Visual Basic.NET) 158
Working with Custom Properties (C#) 159

RevisionManager API 160

Reading File Properties (Visual Basic.NET) 161

Introduction _

Reading File Properties (C#)

Overview

Requirements

ISolidEdgeAddIn Interface

OnConnection

OnDisconnection

Your first addin

Coding the AddIn

Debugging your AddIn

MSDN Code Gallery

Quick Technology Finder

162

Working with Custom Properties (Visual Basic.NET) 164
Working with Custom Properties (C#) 165
CHAPTER 11 - INSTALLATION INFORMATION ---nnnnnnm oo een 167
Extracting Installation Information (Visual Basic .NET) 167
Extracting Installation Information (C#) 169
CHAPTER 12 - ADDINS ------- == - oo oo oo oo 171
171

171

172

172

OnConnectToEnvironment 172
173

174

Create a new Visual Basic .NET project 174
Add reference to SolidEdgeFramework 175
Configuring Project Properties 177
180

Simple AddIn Source Code (Visual Basic .NET) 184
Simple AddIn Source Code (C#) 187
189

CHAPTER 13 - USEFUL REFERENCES ------=------nnnssmmmmmmmssmmmmmmmsssmmm s e e mmm e 193
Microsoft Developer Network (MSDN) Links 193
Visual Studio .NET Technology Map 193
Visual Basic .NET Technology Map 193
Microsoft .NET Framework FAQ 193
193

General Naming Conventions 193
Microsoft Win32 to Microsoft .NET Framework APl Map 193
Microsoft .NET/COM Migration and Interoperability 193
Improving .NET Application Performance and Scalability 193
Exception Management in .NET 193
Handling and Throwing Exceptions 193
193

Deploying .NET Framework-based Applications 193
Beyond (COM) Add Reference Has Anyone Seen the Bridge 193
101 Samples for Visual Studio 2005 194
194

Microsoft Newsgroups

Introduction

microsoft.public.dotnet.fags 194
microsoft.public.dotnet.framework 194
microsoft.public.dotnet.framework.interop 194
microsoft.public.dotnet.framework.performance 194
microsoft.public.dotnet.framework.windowsforms 194
microsoft.public.dotnet.framework.windowsforms.controls 194
microsoft.public.dotnet.general 194
microsoft.public.dotnet.languages.csharp 194
microsoft.public.dotnet.languages.vb 194
microsoft.public.dotnet.languages.vb.controls 194
Solid Edge Newsgroups 194
solid_edge.binaries 194
solid_edge.insight 195
solid_edge.misc 195
solid_edge.programming 195
Programming Links 195
The Code Project 195
PINVOKE.NET 195
DotNetJunkies 195
VB.NET Heaven 195
vbAccelerator 195
CSharpFriends 195
ic#tcode 195

JasonNewell.NET 195

Introduction _

Chapter 1 - Introduction

Welcome to the .NET Programmer's Guide for Solid Edge. This book was written in an effort to enable
.NET developers to quickly get up to speed with automating Solid Edge. Learning the Solid Edge API can
be a monumental task in itself. It takes most people several years before they feel comfortable with the
APl. The most important thing to remember is that it takes time and effort to fully understand and
appreciate all of the techniques that this book will cover.

While there are many .NET programming \ scripting languages that can be used, | will focus primarily on
Visual Basic .NET and C#. Other than syntax, there are relatively few differences between Visual
Basic.NET and C#. A good example of this is the Microsoft Certified Application Developer (MCAD)
exam. There is not a Visual Basic.NET version and C# version of the exam. There is only one version that
asks questions for both languages. The reason is, from a .NET framework point of view, if you know how
to use the framework in Visual Basic .NET, then you also know how to do it in C#. For this reason, focus
of this book will be in the Visual Basic .NET environment with C# specific examples where necessary.

Who Should Read This Book

This book is for anyone wanting to learn how to automate Solid Edge using .NET programming
languages. While prior programming experience will indeed help, it is not necessary. The goal of this
book is to enable developers new to Solid Edge programming to quickly get started. There will be an
abundance of source code examples to learn from.

Visual Basic 6.0 Users

If you are a Visual Basic 6.0 programmer and new to Visual Basic .NET, there are new concepts that
you’ll need to learn. While Visual Basic 6.0 was written with COM programming in mind, Visual Basic
.NET was written with .NET in mind. COM and .NET are two completely different architectures that
don't natively understand each other. They must interact via an "Interop" layer. This interop layer can
be a source of much pain and frustration if not understood properly. One of the goals of this book is to
save you a significant amount of time and frustration learning these new concepts.

It is normal for programmers new to Visual Basic .NET to expect the ability to upgrade their legacy code.
While Microsoft does provide a Visual Basic Upgrade Wizard, it is often the case that the code does not
work as expected after the conversion. There are well documented reasons on MSDN as to why this
happens. While this can be very frustrating, you might consider this an opportunity to write your code
from scratch, learning the new concepts along the way.

For a complete list of language changes, please refer to the following MSDN article:
"Language Changes for Visual Basic 6.0 Users "
http://msdn2.microsoft.com/en-us/library/skw8dhdd(VS.80).aspx.

Introduction _

Software Requirements
This book targets Solid Edge with Synchronous Technology and the Microsoft .NET Framework version
2.0. The .NET 2.0 Framework SDK is freely downloadable at http://msdn2.microsoft.com/downloads.

The examples and screen shots from this book will be from Microsoft Visual Studio 2005 Professional
Edition. You may use any edition of Microsoft Visual Studio 2005 that meets your specific needs. While
not covered in this book, you can also use alternative IDE's like SharpDevelop
http://www.icsharpcode.net/OpenSource/SD/Default.aspx.

APl Overview

Chapter 2 - API Overview

This chapter introduces you to the Solid Edge COM API. While this book is focused on .NET
technologies, you cannot ignore the fact that the API that you're working with is COM based. The
majority of this chapter will discuss very little .NET. This chapter focuses on the aspects of COM
technology that you have to understand in order to use it with .NET.

Solid Edge has a large and robust COM API. You can view these APIs with Microsoft's OLE/COM Object
Viewer (oleview.exe). Oleview.exe can typically be found in the following path:
"%VS80COMNTOOLS%bin\oleview.exe". It will tell you everything you need to know about what APIs
are available and where they are located.

The information you see in the OLE/COM Object View is the rawest view of the Solid Edge type libraries
that you can get. As you'll see later, .NET tends to obscure some of the APl information that you need to
do your job. When in doubt about API definitions, you should always refer to the type library
information.

s OLE/COM Object Viewer
File Object Wiew Help

|9 &| EE &

“I Solid Edge Assembly Type Library (Ver 1.0) o Solid Edge Framework Type Library [Ver 1.0]

3 solid Edge Constants Type Library (¥er 1.0 {BATEFAZ4-FO00-11D1-BDFC-080036B 4D 502}
" Solid Edge Draft Type Library (Wer 1,0)

" Solid Edge File Properties Object Library (Yer 1.0) el l

'_:-|:|||:| Edge Framew e Li { _.' 0] TypeLib
"' Solid Edge FrameworkSupport Type Library {Wer 1.0) JBATEFASA-FODO-1101-BDFC-080036B40502}
r Solid Edge Geametry Tvpe Library (Yer 1.0) 1.0 = Solid Edge Framewark Type Library
" Solid Edge Install Data Library (Yer 1.0} 0

“' Solid Edge Part Type Library (ver 1,00

“' Solid Edge Part Viewer Control (ver 1.0)

" Solid Edge Revision Manager Object Library (Ver 1,00
" Solid Edge Web Parts 1.0 Type Library (VYer 1.0)

" SPhoneParser 1.0 Type Library (Yer 1.0)

“' SPMigautoServer (ver 1.0)

"' spmServices, DRMClienty2 Type Library (vMer 1.0)

r Sql Server Projects Extensibilicy Library (ver 1.0)

" STClient 1.0 Type Library (Wer 1.0}

“' StdParts 1.0 Type Library (ver 1.0)

g STSUpld 1.0 Type Library (ver 1,0} .

win32 = C\Program Files (x86))30lid Edge v20\Programframeverk. tb
FLAGS =0
HELPDIR. = C:\Program Files (x86)\5alid Edge Y204Program,

Ready

Figure 2-1 - OLE/COM Object Viewer

APl Overview

Solid Edge Core Type Libraries

The Solid Edge core COM type libraries are the APIs that are available to automate the Solid Edge
application. These APIs can be used by any programming or scripting language that supports COM.

You can find these type libraries in the installation path of Solid Edge under the “Program” folder. For
example: “%PROGRAMFILES%\Solid Edge VXX\Program”.

Table of core APIs

Name Description Type Library
SolidEdgeFramework Solid Edge Framework Type Library framewrk.tlb
SolidEdgeFrameworkSupport | Solid Edge FrameworkSupport Type Library fwksupp.tlb
SolidEdgePart Solid Edge Part Type Library part.tlb
SolidEdgeGeometry Solid Edge Geometry Type Library geometry.tlb
SolidEdgeAssembly Solid Edge Assembly Type Library assembly.tlb
SolidEdgeDraft Solid Edge Draft Type Library draft.tlb
SolidEdgeConstants Solid Edge Constants Type Library constant.tlb

APl Overview

SolidEdgeFramework Type Library (framewrk.tlb)

The SolidEdgeFramework type library is the root type library. It has no dependencies on any other type
library. At a minimum, you must reference it to interact with Solid Edge with strongly typed objects.
Most other core APIs have a dependency on this type library.

One of the most important interfaces that you will work with is the SolidEdgeFramework.Application
interface. You must get a reference to this object before you can do any automation in Solid Edge.
Typically, this comes in some form of GetObject() or CreateObject(). You can use the ProglID,
“SolidEdge.Application” to get a reference to this object.

Another important interface is the SolideEdgeFramework.SolidEdgeDocument interface. You can use this
interface to interrogate any Solid Edge document type. You will learn more about methods of obtaining
these objects and how to use them in later chapters.

SolidEdgeFrameworkSupport Type Library (fwksupp.tlb)
The SolidEdgeFrameworkSupport type library contains interfaces that span all Solid Edge environments
and are not environment specific.

SolidEdgePart Type Library (part.tlb)
The SolidEdgePart type library contains interfaces related to the following 3-D environments: Part,
SheetMetal, and Weldment.

The most important interfaces in this type library are the SolidEdgePart.PartDocument,
SolidEdgePart.SheetMetalDocument and SolidEdgePart.WeldmentDocument. These interfaces allow
you to work with a specific document type in Solid Edge.

SolidEdgeGeometry Type Library (geometry.tlb)

The SolidEdgeGeometry type library contains interfaces that relate to geometry.

SolidEdgeAssembly Type Library (assembly.tlb)

The SolidEdgeAssembly type library contains interfaces related to the 3-D Assembly environment.

The most important interface in this type library is the SolidEdgeAssembly.AssemblyDocument interface.
This interface allows you to work directly with assembly document types in Solid Edge.

SolidEdgeDraft Type Library (draft.tlb)

The SolidEdgeDraft type library contains interfaces related to the 2-D Draft environment.

The most important interface in this type library is the SolidEdgeAssembly.DraftDocument interface.
This interface allows you to work directly with draft document types in Solid Edge.

SolidEdgeConstants Type Library (constant.tlb)

This type library is exclusively for global enumerations. Oleview.exe is a great way to view these
enumerations and their values. You should be aware that some of the enumerations defined in this type
library are duplicated in other type libraries.

APl Overview

Solid Edge Utility APIs

The Solid Edge Utility APIs allow you to work quickly with Solid Edge data without automating Solid
Edge. Each of these lightweight APIs is focused for a specific area of tasks.

Table of utility APIs

Name Description Type Library
SElnstallDatalLib Solid Edge Install Data Library SEInstallData.dll
SolidEdgeFileProperties Solid Edge File Properties Object Library PropAuto.dll
RevisionManager Solid Edge Revision Manager Object Library RevMgr.tlb

APl Overview

SEInstallDataLib (SEInstallData.dll)
The SElnstallDatalib APl is used to safely harvest installation information about Solid Edge from the
Windows registry. It contains only one class, the SEInstallData class. This class has straight forward
named methods to get installation information.

You can use the ProgID “SolidEdge.InstallData” to create an instance of the SEInstallData class.

SolidEdgeFileProperties (PropAuto.dll)

The SolidEdgeFileProperties APl is used to read and write Solid Edge file properties outside of Solid Edge.
This can be extremely useful when you need to quickly work with a large dataset of files. Solid Edge
uses standard Microsoft Structured Storage API to store properties.

You can learn more about Microsoft’s Structured Storage APl on MSDN at:
http://msdn2.microsoft.com/en-us/library/aa380369(VS.80).aspx

RevisionManager (RevMgr.tlb)

The RevisionManager API can be used for several purposes.

® Manage file properties
® Manage link information
® |ntegrate with Insight

You can use the ProgID 'RevisionManager.Application' to create an instance of the Application class.

.NET Overview

Chapter 3 - .NET Overview

This chapter introduces the .NET framework and discusses the more important parts of the framework
in regards to Solid Edge.

The Microsoft .NET framework is a platform for building, deploying, and running Web Services and
applications. It provides a highly productive, standards-based, multi-language environment for
integrating existing investments with next-generation applications and services.

You can learn more about Microsoft's .NET Framework on MSDN at:
http://msdn2.microsoft.com/netframework

.NET Overview

Terminology

Application Domain

Application Domains are isolated boundaries of memory allocated by the framework for applications to
execute inside of. When your programs execute, the framework will create a “Default AppDomain” for
your application.

Assembly
Assemblies are the building blocks of .NET framework applications. When you compile a .NET
application, you are building an assembly.

COM Interop

The .NET framework is a natural progression from COM because the two models share many central
themes, including component reuse and language neutrality. For backward compatibility, COM interop
provides access to existing COM components without requiring that the original component be
modified. You can incorporate COM components into a .NET Framework application by using COM
interop tools to import the relevant COM types. Once imported, the COM types are ready to use.

When you add a reference to a Solid Edge type library, Visual Studio .NET automatically build a .NET
assembly for use in your project. This assembly will contain all of the type library definitions in a format
that can be consumed from any .NET programming language. These generated assemblies are referred
to as “Interop Assemblies”.

Garbage Collection

The .NET framework employs a non-deterministic approach to freeing memory whereas languages like
Visual Basic 6.0 or C++ use a deterministic approach. This means that when you free a reference to an
object, the memory allocated for the object is not immediately freed but rather is flagged as being
available for garbage collection. Garbage collection occurs when the framework identifies an opportune
time to perform the actual collection. You have no control of when this occurs nor will you be notified
when it happens.

In regards to COM interop, this can lead to trouble releasing COM objects in a timely manner.

Interop Assemblies

Interop Assemblies are generated by the Type Library Importer (TIbimp.exe) tool. Visual Studio .NET
automatically generates interop assemblies for you when you reference COM type libraries. Once
create this reference, your application will depend upon the interop assembly for execution.

Marshal Class

The Marshal class is a utility class for interacting with unmanaged code. While the scope of the class is
rather large, you will be primarily interested in its interop services. Specifically, the
Marshal.ReleaseComObject() method is what you will use to free references to COM objects.

.NET Overview

Runtime Callable Wrapper (RCW)

The .NET runtime exposes COM objects through a proxy called the runtime callable wrapper. Although
the RCW appears to be an ordinary object to .NET clients, its primary function is to marshal calls
between a .NET client and a COM object. The runtime creates exactly one RCW for each COM object
within an application domain.

In Visual Basic 6.0, you could simply set an object equal to “Nothing” to release the COM reference. In
.NET, you must use a Marshal.ReleaseComObject() call on each and every COM object that you have a
reference to in order to decrement the reference count on the RCW. It is only when the RCW reference
count reaches zero will the actual COM reference be released.

To apply this concept to Solid Edge programming terms, say you have a simple reference to a Solid Edge
document. You use the object in a function, set the object equal to Nothing, and your function
completes. You won't see it, but the .NET framework created a RCW for the object and, because of
garbage collection, the RCW is still holding a reference to the COM object. Because you didn’t call
Marshal.ReleaseComObject(), Solid Edge thinks that the object is still in use. Depending on the scenario,
Solid Edge may crash as it is attempting to delete the COM object in memory but you still have an
outstanding reference to it via the RCW.

It is this fundamental concept that Solid Edge programmers using .NET need to fully understand.

Getting Started

Chapter 4 - Getting Started

In this chapter, you will begin writing actual .NET code to interact with Solid Edge. Along the way, you'll
take a look at what's really going on under the hood of Visual Studio. I've touched on the fact that COM
and .NET do not natively understand each other. How is it possible to write a .NET application that uses
a COM API? All of this will become clear as you proceed forward.

The most important concept to grasp at this time is the Interop concept. You need to understand that
.NET objects do not communicate directly to COM objects and vice-versa. There will always be an
Interop layer doing the communication and COM reference counting for us. For the most part, this
Interop layer is discretely hidden from us but you still need to have a general understanding of how it

works.

When working with COM based programming languages like Visual Basic 6.0 or Visual C++, it was
enough to simply set a reference equal to Nothing or NULL. In .NET, we must also utilize the
Marshal.ReleaseComObject() method to decrement the Runtime Callable Wrapper (RCW) reference
count.

Getting Started

Your first macro

Create a new Visual Basic .NET project

Visual Studio .NET offers many different templates for different project types. Depending on your
needs, the template that you choose will vary. If you simply want to automate Solid Edge without any
user interaction, the Console Application template generally works well.

New Project
I_-I
Project bypes: Templates: || E
Wisual C# ¥isual Studio installed templates &
= Other Languages
[=)- Wisual Basic f -
Vg ‘E Ve VB
WWindows ;j _g # ;ﬂ
St Device Windows Class Library Console Windows Device
Database Application Application Control Library Application
Starter Kits
Web E‘ %
Wisual C++ =¥e CE== 1
Other Project Types ASP.MET Web ASP.MET Web
Application Serwvice Ap...
My Templates
il e
& project For creating a command-line application |
Marne: | MyMacr0| |
Location: | CTemp w | [Erowse, ..]
Solution Mame: | MyMacro | [#] Create directory For solution
[]add to Source Contral
(o] 4] [Zancel

Figure 4-1 - New Project

This creates an empty console application project that you can use to begin your work.

Adding a reference to Solid Edge API

Before you can start working with the Solid Edge API, you'll need to add a reference to the type libraries
that you'll be using. You can begin by selecting Project -> Add Reference from the main menu in Visual
Studio .NET.

2% MyMacro - Microsoft Visual Studio

File Edit Yiew | Project | Build Debug Data Tools

A== =
0% b s d
Module1.vb | &l

]
F Hodule %

MO0 | 5

Enc

Add Windows Form, ..

fdd User Cantral. ..

Add Component. ..

Add Module. ..

Add Class... Shift+Alk+-C
Add Mew Ttem. .. Ctrl+Shift+a
#dd Existing Ikem... Shift+alk+a
Exchude From Project

Shiow &l Files

End Mod

&dd Reference. .,

add Web Reference. ..

Set as Starklp Project

MyMacra Properties. ..

Figure 4-2 - Add Reference

Getting Started

The Add Reference dialog window will appear. You will first need to click the COM tab. Scroll down
until you get to the Solid Edge Type Libraries. Select the Solid Edge Framework Type Library as shown

below.

Add Reference

Getting Started

PX

JMET | COM | Projects | Browse || Recent
Component Mame Typelib Yersion = Path o
Solid Edge assembly Type Library 1.0 Z:\Program F
Solid Edge Constants Type Library 1.0 Z:\Program F
Solid Edge Draft Tvpe Library 1.0 Z:\Program F
Solid Edge File Properties Object Library 1.0 Z:\Program F
Solid Edge Framework Type Library 1.0 C:1Program
Solid Edge FrameworkSupport Type Library 1.0 Z:\Program F
Solid Edge Geometry Type Libraty 1.0 Z:\Program F
Solid Edge Install Data Library 1.0 C:\Program F
Solid Edge Park Tyvpe Library 1.0 CProgram F
Solid Edge Part Wiewer Control 1.0 Z:\Program F
Salid Edge Revision Manager Object Library 1.0 ChProgram F
Solid Edge “Web Parts 1.0 Tvpe Library 1.0 C:\Program F
SPhoneParser 1.0 Type Library 1.0 CProgram F
SPMigAutoServer 1.0 Z:\Program F
srrnServicres. NRMClienEY? Teme |ikrary 1.0 C\Prankam FOY
< | >
O,] [Cancel

Figure 4-3 - Add Reference

Visual Basic 6.0 users will immediately recognize this as a step they've had to do in the past. While the

steps appear similar, the actual details of what's going on under the hood are quite different. Because

Visual Basic 6.0 was written to be a COM programming language, it could reference existing COM Type

Libraries directly.

When you add a COM reference in .NET, Visual Studio .NET actually calls a Type Library Importer

program that generates an "Interop Assembly" for your project to use. This also means that your

executable will forever and always dependent upon the generated interop assembly. If you plan on

deploying your application to users, you'll need to be sure to include any interop assemblies that you've

generated for your project.

If you wish to learn more about the Type Library Importer, please reference MSDN documentation:
http://msdn2.microsoft.com/en-us/library/tt0Ocf3sx(VS.80).aspx

Viewing Interop Assembly References

Now that you know how to add Solid Edge API support to your project, let see how you can view your

project's dependencies, specifically interop assemblies. Select Project -> <Project Name> Properties

from the main menu in Visual Studio .NET.

@9 MyMacro - Microsoft Visual Studio

Project | Build Debug Data Tools !

File Edit Miew

R A=A

[%% b a2

~Modulel.vb

i Modulel
F Hodule

[[& B B B [

HOG00 | Q{.

Suk
End

End HMoc

Add wWindows Form, ..
Add User Contral..,
Add Camponent. ..
Add Module. ..

Add Class... Shift+alk+C
Add Mew Ttem. .. Ctrl4+-5hift+a
&dd Existing Ikem... Shift+alk+4
Exclude From Project

Show All Files

Add Reference...

Add Web Reference...

Set as Starklp Praoject

AT 7T

MyMacra Properties. ..

Figure 4-4 - Project Properties

Getting Started

Once the project properties appear, select the References tab. Here you can see the interop assembly,

Interop.SolidEdgeFramework.dll, that the Type Library Importer created for your project. Your

executable is dependent upon the references that you see in this window.

Getting Started

29 MyMacro - Microsoft Visual Studio

File Edit Wiew Project Buld Debug Data Tools Window Community Help
S-S H @ 4 a9 F- 0 b vy - anyCRu - | (# beep = N
}?.: /ﬁyMacro Modulel.vb | Start Page - X o] |
=t |t
T Application |5
= i 12
= i |m
Compile E'ST
[Unused Referances. ..] [Reference Paths...] bt 5]
Debug References: 1 g-’
; Reference Mame Type | Mers... Copylocal Path | g
References Solid Edge Framework Type Library i True i Templ My roobjiDebughInkerop, SolidEdgeFrame 9
Syskem JMET 2.0.0.0 False CAWINDOWS Microsoft NETFrameworklv2,.0,5072713ystem. dll
Resources Syskemn.Data JMET 2.0.0.0 False cAWINDOW S Microsoft METYFrameworkiv2. 0,507 27 3wstem . Data.dll
System, Deplovment MET 2.0.0.0 False W INDOWS Microsoft, METYFrameworkiv2,.0,.507273yskem . Deployment. dl
Sektings Swskern, ¥l JMET 2.0.0.0 False CWINDOWS Microsaft METYFrameworkiv2,0.507273wstam, ¥ml.dl
Signing
Security
Publish
-\--H.-H-\"-\‘_-\-
Add... v][Remove
i
Ready

Figure 4-5 - Project References

For generated interop assemblies like the Interop.SolidEdgeFramework.dll, they will have the "Copy
Local" flag set to True. This means that these .dll's will be placed in the projects output folder when you

build the project.

& C:\Temp\MyMacro\MyMacro\bin\Debug ._ E| |r£|
File Edit Miew Favarites Tools Help 1".'*
e Back - _..fl lﬁ /':\] Search [{’_1" Folders *

Address |Ia i Ternpd MyMacrolMyMacrobinl Debug et o
Folders = Inkerop, SolidEdgeFrarmework., dll

= Ia Temp [A B MyMacro.exe
I DumpDispatchinterfaces 1 I%jmymacru.pd: :
wMacro,vshost,exe
= 123 MyMacro — |
B 3 MyMacro | = MyMacro.xm
= 23 bin -
2 Debug
I3 My Project
I obj v
Z objects selected 412 KB 5} My Computer

Figure 4-6 - Build Folder

Getting Started

Connecting to Solid Edge (Visual Basic.NET)

You may still use the familiar GetObject () method from the Visual Basic 6 days if you'd like. In Visual
Basic .NET, GetObject () simply calls Marshal.GetActiveObject (). Thisisimportant to
understand because GetObject() is a language specific feature of Visual Basic .NET. No other .NET
language has a comparable feature. The other .NET languages must rely on Marshal.GetActiveObject().

Imports System.Runtime.InteropServices
Module Modulel
Sub Main ()
Dim objApp As SolidEdgeFramework.Application = Nothing
Try
'0ld VB6 Syntax
'objApp = GetObject(, "SolidEdge.Application")
'New Visual Basic.NET Syntax

' Connect to a running instance of Solid Edge
objApp = Marshal.GetActiveObject ("SolidEdge.Application™)
Catch ex As Exception
Console.WritelLine (ex.Message)
Finally
If Not (objApp Is Nothing) Then
Marshal.ReleaseComObject (objApp)
objApp = Nothing
End If
End Try
End Sub
End Module

Connecting to Solid Edge (C#)
using System;
using System.Runtime.InteropServices;
namespace MyMacro
{
class Program
{
static void Main(string[] args)
{
SolidEdgeFramework.Application application = null;
try
{
// Connect to a running instance of Solid Edge
application = (SolidEdgeFramework.Application)
Marshal.GetActiveObject ("SolidEdge.Application");
}
catch (System.Exception ex)
{
Console.WriteLine (ex.Message) ;
}
finally
{
if (application != null)
{
Marshal .ReleaseComObject (application) ;
application = null;

Getting Started

Starting Solid Edge (Visual Basic .NET)

You may still use the familiar CreateObject() method from the Visual Basic 6 days if you'd like. In Visual
Basic .NET, CreateObject() simply calls Activator.Createlnstance(). This is important to understand
because CreateObject() is a language specific feature of Visual Basic .NET. No other .NET language has a
comparable feature. The other .NET languages must rely on Activator.Createlnstance().

Imports System.Runtime.InteropServices
Module Modulel
Sub Main ()
Dim objApp As SolidEdgeFramework.Application
Dim objType As Type
Try
'0ld VB6 Syntax
'objApp = CreateObject ("SolidEdge.Application")
'New Visual Basic.NET Syntax

' Get the type from the Solid Edge ProgID
objType = Type.GetTypeFromProgID("SolidEdge.Application")

' Start Solid Edge
objApp = Activator.Createlnstance (objType)

' Make Solid Edge visible
objApp.Visible = True
Catch ex As Exception
Console.WritelLine (ex.Message)
Finally
If Not (objApp Is Nothing) Then
Marshal .ReleaseComObject (objApp)
objApp = Nothing
End If
End Try
End Sub
End Module

Starting Solid Edge (C#)
using System;
using System.Runtime.InteropServices;
namespace MyMacro
{
class Program
{
static void Main(string[] args)
{
SolidEdgeFramework.Application application = null;
Type type = null;
try
{

Getting Started

// Get the type from the Solid Edge ProgID
type = Type.GetTypeFromProgID("SolidEdge.Application");

// Start Solid Edge
application = (SolidEdgeFramework.Application)
Activator.CreatelInstance (type);

// Make Solid Edge visible
application.Visible = true;
}
catch (System.Exception ex)
{
Console.WritelLine (ex.Message) ;
}
finally
{
if (application != null)
{
Marshal.ReleaseComObject (application) ;
application = null;

Getting Started

Working with Documents

The following lists the classes (also called ProgIDs) associated with Solid Edge and each type of
document environment. These class names can be used in the Visual Basic function CreateObject and
can also be used in the Add method of the Documents object.

All Solid Edge document objects implement the SolidEdgeFramework.SolidEdgeDocument
interface. This generic interface allows document ambiguity when you don't know what type of
document that you're working with.

Table of document Proglds

ProglD Description
SolidEdge.Application Solid Edge Application
SolidEdge.PartDocument Solid Edge Part Document
SolidEdge.SheetMetalDocument Solid Edge Sheet Metal Document
SolidEdge.AssemblyDocument Solid Edge Assembly Document
SolidEdge.WeldmentDocument Solid Edge Weldment Document
SolidEdge.DraftDocument Solid Edge Draft Document

Creating Documents Example (Visual Basic.NET)

Imports System.Runtime.InteropServices
Module Modulel
Sub Main ()
Dim objApp As SolidEdgeFramework.Application = Nothing
Dim objDocuments As SolidEdgeFramework.Documents = Nothing
Dim objAssembly As SolidEdgeAssembly.AssemblyDocument = Nothing
Dim objDraft As SolidEdgeDraft.DraftDocument = Nothing
Dim objPart As SolidEdgePart.PartDocument = Nothing
Dim objSheetMetal As SolidEdgePart.SheetMetalDocument = Nothing
Dim objWeldment As SolidEdgePart.WeldmentDocument = Nothing
Dim objType As Type

Try
' Get the type from the Solid Edge ProgID
objType = Type.GetTypeFromProgID("SolidEdge.Application")

' Start Solid Edge
objApp = Activator.CreatelInstance (objType)

' Make Solid Edge visible
objApp.Visible = True

' Turn off alerts. Weldment environment will display a warning
objApp.DisplayAlerts = False

' Get a reference to the Documents collection
objDocuments = objApp.Documents

' Create an instance of each document environment
objAssembly = objDocuments.Add("SolidEdge.AssemblyDocument")

Getting Started

objDraft = objDocuments.Add("SolidEdge.DraftDocument")
objPart = objDocuments.Add("SolidEdge.PartDocument")
objSheetMetal = objDocuments.Add("SolidEdge.SheetMetalDocument")
objWeldment = objDocuments.Add("SolidEdge.WeldmentDocument")
' Turn alerts back on
objApp.DisplayAlerts = True
Catch ex As Exception
Console.WritelLine (ex.Message)
Finally
If Not (objAssembly Is Nothing) Then
Marshal .ReleaseComObject (objAssembly)
objAssembly = Nothing
End If
If Not (objDraft Is Nothing) Then
Marshal.ReleaseComObject (objDraft)
objDraft = Nothing
End If
If Not (objPart Is Nothing) Then
Marshal.ReleaseComObject (objPart)
objPart = Nothing
End If
If Not (objSheetMetal Is Nothing) Then
Marshal.ReleaseComObject (objSheetMetal)
objSheetMetal = Nothing
End If
If Not (objWeldment Is Nothing) Then
Marshal.ReleaseComObject (objWeldment)
objWeldment = Nothing
End If
If Not (objDocuments Is Nothing) Then
Marshal.ReleaseComObject (objDocuments)
objDocuments = Nothing
End If
If Not (objApp Is Nothing) Then
Marshal.ReleaseComObject (objApp)
objApp = Nothing
End If
End Try
End Sub
End Module

Creating Documents Example (C#)
using System;

using System.Reflection;

using System.Runtime.InteropServices;

namespace MyMacro
{
class Program
{
static void Main(string[] args)
{
SolidEdgeFramework.Application application = null;
SolidEdgeFramework.Documents documents = null;
SolidEdgeAssembly.AssemblyDocument assembly = null;

Getting Started

SolidEdgeDraft.DraftDocument draft = null;
SolidEdgePart.PartDocument part = null;
SolidEdgePart.SheetMetalDocument sheetmetal = null;
SolidEdgePart .WeldmentDocument weldment = null;
Type type = null;

try
{
// Get the type from the Solid Edge ProgID
type = Type.GetTypeFromProgID("SolidEdge.Application");

// Start Solid Edge
application = (SolidEdgeFramework.Application)
Activator.Createlnstance (type);

// Make Solid Edge visible
application.Visible = true;

// Turn off alerts. Weldment environment will display a warning
application.DisplayAlerts = false;

// Get a reference to the Documents collection
documents = application.Documents;

// Create an instance of each document environment
assembly = (SolidEdgeAssembly.AssemblyDocument)

documents.Add ("SolidEdge.AssemblyDocument", Missing.Value);
draft = (SolidEdgeDraft.DraftDocument)

documents.Add ("SolidEdge.DraftDocument", Missing.Value) ;
part = (SolidEdgePart.PartDocument)

documents.Add ("SolidEdge.PartDocument", Missing.Value);
sheetmetal = (SolidEdgePart.SheetMetalDocument)

documents.Add ("SolidEdge.SheetMetalDocument", Missing.Value);
weldment = (SolidEdgePart.WeldmentDocument)

documents.Add ("SolidEdge.WeldmentDocument", Missing.Value);

// Turn alerts back on
application.DisplayAlerts = true;
}
catch (System.Exception ex)

{

Console.WriteLine (ex.Message) ;

}
finally

{
if (assembly != null)

{

Marshal.ReleaseComObject (assembly) ;
assembly = null;

if (draft != null)

Marshal.ReleaseComObject (draft) ;
draft = null;

}

if (part != null)

{

Getting Started

Marshal .ReleaseComObject (part) ;
part = null;
}
if (sheetmetal != null)
{
Marshal .ReleaseComObject (sheetmetal) ;
sheetmetal = null;

if (weldment != null)

Marshal .ReleaseComObject (weldment) ;
weldment = null;

if (documents != null)

Marshal .ReleaseComObject (documents) ;
documents = null;

if (application != null)

Marshal .ReleaseComObject (application) ;
application = null;

Determining Document Type Example (Visual Basic.NET)

Imports System.Runtime.InteropServices
Imports SolidEdgeFramework

Module Modulel
Sub Main ()
Dim objApplication As SolidEdgeFramework.Application = Nothing
Dim objDocument As SolidEdgeFramework.SolidEdgeDocument = Nothing
Try
' Connect to a running instance of Solid Edge.
objApplication = Marshal.GetActiveObject ("SolidEdge.Application™)
' Get a reference to the active document
objDocument = objApplication.ActiveDocument
' Using Type property, determine document type
Select Case objDocument.Type
Case DocumentTypeConstants.igAssemblyDocument
Console.WriteLine ("Assembly Document")
Case DocumentTypeConstants.igDraftDocument
Console.WriteLine ("Draft Document")
Case DocumentTypeConstants.igPartDocument
Console.WriteLine ("Part Document")
Case DocumentTypeConstants.igSheetMetalDocument
Console.WritelLine ("SheetMetal Document")
Case DocumentTypeConstants.igUnknownDocument
Console.WriteLine ("Unknown Document")

Getting Started

Case DocumentTypeConstants.igWeldmentAssemblyDocument
Console.WriteLine ("Weldment Assembly Document")
Case DocumentTypeConstants.igWeldmentDocument
Console.WriteLine ("Weldment Document")
End Select
Catch ex As Exception
Console.WritelLine (ex.Message)
Finally
If Not (objDocument Is Nothing) Then
Marshal.ReleaseComObject (objDocument)
objDocument = Nothing
End If
If Not (objApplication Is Nothing) Then
Marshal.ReleaseComObject (objApplication)
objApplication = Nothing
End If
End Try
End Sub
End Module

Determining Document Type Example (C#)
using SolidEdgeFramework;

using System;

using System.Runtime.InteropServices;

namespace MyMacro

{

class Program

{

static void Main(string[] args)

{

SolidEdgeFramework.Application application = null;
SolidEdgeFramework.SolidEdgeDocument document = null;

try

{

}

// Connect to a running instance of Solid Edge.
application = (SolidEdgeFramework.Application)

Marshal.GetActiveObject ("SolidEdge.Application");

// Get a reference to the active document
document = (SolidEdgeFramework.SolidEdgeDocument)

application.ActiveDocument;

// Using Type property, determine document type
switch (document.Type)

case DocumentTypeConstants.igAssemblyDocument :
Console.WriteLine ("Assembly Document");
break;

case DocumentTypeConstants.igDraftDocument :
Console.WriteLine ("Draft Document");
break;

case DocumentTypeConstants.igPartDocument:
Console.WriteLine ("Part Document");
break;

case DocumentTypeConstants.igSheetMetalDocument:
Console.WriteLine ("SheetMetal Document");
break;

case DocumentTypeConstants.igUnknownDocument :
Console.WriteLine ("Unknown Document");
break;

case DocumentTypeConstants.igWeldmentAssemblyDocument :
Console.WriteLine ("Weldment Assembly Document");
break;

case DocumentTypeConstants.igWeldmentDocument :
Console.WriteLine ("Weldment Document") ;
break;

catch (System.Exception ex)

{
}

Console.WriteLine (ex.Message) ;

finally

{

if (document != null)

Getting Started

{

Marshal .ReleaseComObject (document) ;
document = null;

(application != null)

Marshal .ReleaseComObject (application) ;
application = null;

Getting Started

Units of Measure

Chapter 5 - Units of Measure

In the interactive environment, Solid Edge allows you to specify the length, angle, and area units to use
when placing, modifying, and measuring geometry. For example, you can specify millimeters as the
default length unit of measurement; you can also specify the degree of precision of the readout. You
specify these properties on the Units and Advanced Units tabs of the Properties dialog box. (On the File
menu, click Properties to display the dialog box.)

Part1 Properties [$_<|

General | Summary | Statistics | Project Status| Urits |Preview Cuistam

Length Readout

[t Precizion; | 0123
Angle Readout

[t Precizion: | 012

Area Readout

it | in™2 W Precizion: | 0123

Advanced Unitz...]

k. [Cancel H Help

5-1 - Units of Measure

This is strictly a manipulation of the display of the precision; internally all measurements are stored at

their full precision.

With a Length Readout precision of 0.12, the length of any linear measurement is displayed as follows:

Units of Measure

Because millimeters are the default units in this example, whenever distance units are entered, they
have to be in millimeters. If a user enters a distance value in inches, for example, the units are
automatically converted to millimeters.

Lenath: Length: w

Converts to
The units system in Solid Edge allows users to specify the default units and to control how values are
displayed for each of the units. Users can change the default units and their display at any time and as
often as necessary.

You can customize Solid Edge so that your commands behave in a similar way. For example, suppose
you are creating a program to place hexagons. The program displays a dialog box that allows you to
enter the size of the hexagon and then creates the hexagon at a location specified by a mouse click.
When users enter the size of the hexagon, they should be able to enter the value in the user-specified
default unit. Also, users should be able to override the default unit and specify any linear unit. The
program will need to handle any valid unit input.

Internal Units

Unit Type Internal Units
Distance Meter

Angle Radian

Mass Kilogram
Time Second
Temperature Kelvin

Charge Ampere
Luminous Intensity Candela
Amount of Substance Mole

Solid Angle Steradian

All other units are derived from these. All calculations and geometry placements use these internal
units. When values are displayed to the user, the value is converted from the internal unit to the user-
specified unit.

When automating Solid Edge, first convert user input to internal units. Calculations and geometric
placements use the internal units. When displaying units, you must convert from internal units to
default units. The UnitsOfMeasure object handles these conversions.

Units of Measure

Working with Units of Measure

The UnitsofMeasure object provides two methods: ParseUnit and FormatUnit. In addition, a set of
constants is provided to use as arguments in the methods. The ParseUnit method uses any valid unit
string to return the corresponding database units. The FormatUnit method uses a value in database
units to return a string in the user-specified unit type, such as igUnitDistance, igUnitAngle, and so forth.
The units (meters, inches, and so forth) and precision are controlled by the active units for the
document.

The following programs uses both the ParseUnit and FormatUnit methods to duplicate the behavior of
unit fields in Solid Edge. The code also checks whether the input is a valid unit key-in and outputs the
correctly formatted string according to the user-specified setting.

Error handling is used to determine if a valid unit has been entered. The Text property from the text
field is used as input to the ParseUnit method, and the unit is a distance unit. If the ParseUnit method
generates an error, focus is returned to the text field, and an error is displayed, giving the user a chance
to correct the input. This cycle continues until the user enters a correct unit value. If the key-in is valid,
then the database value is converted into a unit string and displayed in the text field.

Units of Measure

[rput it |1 |

Output Unit: | 0.001 |

Parze & Farmat E |

5-2 - Units of Measure Example

Formatting and Displaying Units (Visual Basic.NET)

Imports SolidEdgeFramework
Imports System.Runtime.InteropServices

Public Class Forml
Private m_application As SolidEdgeFramework.Application

Private Sub Forml_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

Try
' Connect to a running instance of Solid Edge
m_application = Marshal.GetActiveObject ("SolidEdge.Application™)
Catch ex As Exception
MessageBox.Show (ex.Message, "Error")
End Try

End Sub

Private Sub Buttonl_Click (ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Buttonl.Click

Units of Measure

Dim objDocument As SolidEdgeFramework.SolidEdgeDocument = Nothing

Dim objUOM As SolidEdgeFramework.UnitsOfMeasure = Nothing

Dim dHexSize As Double

Try
' Get a reference to the active document

objDocument = m_application.ActiveDocument

' Get a reference to the active document's unit of measure

objUOM = objDocument.UnitsOfMeasure

' Attempt to parse the UOM input by user

dHexSize = objUOM.ParseUnit (_

UnitTypeConstants.igUnitDistance, TextBoxl.Text)

' Update the 2nd textbox with the parsed UOM
TextBox2.Text = dHexSize.ToString()
Catch ex As Exception
MessageBox.Show (ex.Message, "Invalid unit")
Finally
If Not (0bjUOM Is Nothing) Then
Marshal.ReleaseComObject (0bjUOM)
objUOM = Nothing
End If
If Not (objDocument Is Nothing) Then
Marshal.ReleaseComObject (objDocument)
objDocument = Nothing
End If
End Try
End Sub

Private Sub Forml_FormClosing(ByVal sender As System.Object,
ByVal e As System.Windows.Forms.FormClosingEventArgs)
Handles MyBase.FormClosing

Try
If Not (m_application Is Nothing) Then
Marshal.ReleaseComObject (m_application)
m_application = Nothing
End If
Catch ex As Exception
MessageBox.Show (ex.Message, "Error")
End Try
End Sub
End Class

Formatting and Displaying Units (C#)
using SolidEdgeFramework;

using System;

using System.Runtime.InteropServices;
using System.Windows.Forms;

namespace MyMacro

{

public partial class Forml : Form

Units of Measure

private SolidEdgeFramework.Application m_application;

public Forml ()
{

InitializeComponent () ;

private void Forml_Load (object sender, EventArgs e)
{
try
{
// Connect to a running instance of Solid Edge
m_application = (SolidEdgeFramework.Application)
Marshal.GetActiveObject ("SolidEdge.Application");
}
catch (System.Exception ex)
{
MessageBox.Show(ex.Message, "Error");

}

private void Buttonl_Click(object sender, EventArgs e)
{
SolidEdgeFramework.SolidEdgeDocument document = null;
SolidEdgeFramework.UnitsOfMeasure uom = null;
double dHexSize = 0;
try
{
// Get a reference to the active document
document = (SolidEdgeFramework.SolidEdgeDocument)
m_application.ActiveDocument;

// Get a reference to the active document's unit of measure
uom = document.UnitsOfMeasure;

// Attempt to parse the UOM input by user
dHexSize = (double)uom.ParseUnit (
(int)UnitTypeConstants.igUnitDistance, TextBoxl.Text);

// Update the 2nd textbox with the parsed UOM
TextBox2.Text = dHexSize.ToString();
}
catch (System.Exception ex)
{
MessageBox.Show (ex.Message, "Invalid unit");
}
finally
{
if (uom != null)
{
Marshal .ReleaseComObject (uom) ;
uom = null;
}
if (document != null)

{

Marshal .ReleaseComObject (document) ;

Units of Measure

document = null;

}

private void Forml_FormClosing(object sender, FormClosingEventArgs e)
{
try
{
if (m_application != null)
{
Marshal .ReleaseComObject (m_application);
m_application = null;
}
}
catch (System.Exception ex)
{
MessageBox.Show(ex.Message, "Error");

}

Part and Sheet Metal Documents _

Chapter 6 - Part and Sheet Metal Documents

Models Collection

The PartDocument supports a Models collection. A Model is a group of graphics. In Solid Edge, a Model
consists of a set of Features that make up a single solid (which may consist of nonoverlapping solid
regions, a disjoint solid). In addition to the objects shown in this hierarchy diagram, the PartDocument
object supports the following methods/properties: AttachedPropertyTables, AttributeQuery,
Constructions, CoordinateSystems, DocumentEvents, FamilyMembers, HighlightSets, Properties,
PropertyTableDefinitions, RoutingSlip, SelectSet, Sketches, Summarylnfo, UnitsOfMeasure, and
Windows, among others.

Model Object

Using the Add method on the Models collection creates a Model object. Use an Add method on the
Models collection once to create the base feature, and then use the Add method on the Features
collection to create subsequent features. The Model object acts as the parent of the features that
define the part. You access the individual features through the Model object.

Reference Planes

When you model a part, a reference plane (the RefPlane object) must exist before you can create a
profile. The corresponding collection object, RefPlanes, provides several methods to enable you to
place reference planes. These methods roughly correspond to the reference plane commands that are
available in the interactive environment.

e AddAngularByAngle—Creates angular and perpendicular reference planes. The perpendicular
reference plane is a special case of the angular reference plane where the angle is pi/2 radians
(90 degrees).

e AddNormalToCurve and AddNormalToCurveAtDistance—Create reference planes that are
normal to a part edge. With AddNormalToCurve, if the edge is a closed curve, the plane is placed
at the curve's start point. AddNormalToCurveAtDistance places the plane at a specified offset
from the start point.

e AddParallelByDistance—Creates coincident and parallel reference planes. A coincident
reference plane is a parallel reference plane where the offset value is zero.

e AddParallelByTangent—Creates parallel reference planes that are tangent to a curve.

e AddBy3Points—Creates reference planes associative to three points you specify.

Profiles

With many types of features, one of the first steps in the construction process is to draw a two-
dimensional profile. It is the projection of this profile through a third dimension that defines the shape
of the feature.

The workflow for modeling a feature through automation is the same as the workflow in the interactive
environment. For profile-dependent features, you draw the profile and then project or revolve it. In the

Part and Sheet Metal Documents

automation environment, the profile is a required input to the add method for certain types of features.
In addition, profile automation includes the ability to create, query, and modify profiles.

Modeling Coordinate System

When you work interactively in Solid Edge, there is no need to be aware of a coordinate system. This is
because you create profiles and features relative to the initial reference planes and existing geometry.
When modeling non-interactively, however, it is often easier to identify specific locations in space to
position profiles and features rather than to define relationships to existing geometry. Understanding
the coordinate system is necessary to correctly place and orient profiles and features. Solid Edge uses
the Cartesian coordinate system. The units used when expressing coordinates in the system are always
meters.

2D Geometry

The Solid Edge automation model allows you to place many different two dimensional geometry objects.
Through automation, you can place and manipulate objects such as arcs, b-spline curves, circles, ellipses,
elliptical arcs, hole centers, and lines.

To create a 2-D geometry object, first access a Profile object. The Profile object owns the 2-D graphic
object collections, and it is through add methods on these collections that you create geometry. For
example, to create a line, you could use the AddBy2Points method, which is available through the
Lines2d collection.

Note that the Parent property of the 2-D geometry object is the Profile object, not the collection. The
collection provides a way to create objects and iterate through them.

When a 2-D geometry object is created, it is assigned a name. This name, which is stored in the Name
property, consists of two parts: the object type (such as Line2d, Arc2d, or Circle2d) and a unique integer.
Each object's name is therefore unique, and because it never changes, you can always use the Name
property to reference a 2-D graphic object.

Solid Edge also allows you to establish and maintain relationships on the 2-D elements that you draw in
the Profile environment. These relationships control the size, shape, and position of an element in
relation to other elements.

2D Relationships

When an element changes, it is the relationships that drive the update of related elements. For
example, if you have drawn a polygon with two lines parallel to one another and you modify the
polygon, the two lines remain parallel. You can also change elements that have dimensions. If a driving
dimension measures the radius of an arc, you can edit the value of the dimension to change the radius
of the arc.

The Relations2d object provides the methods for placing relationships and for iterating through all the
relationships that exist on the associated profile. To establish a relationship between elements, use an
add method on the Relations2d collection on the profile.

Part and Sheet Metal Documents

The objects for which you want to define the relationship must already exist on the profile. There is an
add method on the Relation2d object for each type of relationship that can be defined. Once a
relationship is defined, properties and methods on the Relation2d object allow you to edit existing
relationships or query for information about relationships.

Many relationships are placed at a specific location on an element. For example, when you place a key
point relationship to link the endpoints of two lines, you select one end of each line. The programming
interface for placing relationships provides the ability to select specific points on an element by using
predefined key points for each geometrical element. The key point to use is specified by using key point
indexes.

Variables

The variable system allows you to define relationships between variables and dimensions using
equations, external functions, and spreadsheets. For example, you can construct a rectangular profile
using four lines, and place two dimensions to control the height and width. The following illustration
shows the Variable Table with these two dimensions displayed. (Every dimension is automatically

available as a variable.)

Part1:¥ariable Table

distance ¥| F | f$| #h | Help
Type Mame Yalue Fule | Formula
Dim W322 113,892 mm
Dim ExtrudedProtrusion_1_FinikeDepth 45,019 mm
4 >

Using these variables, you can make the height a function of the width by entering a formula. For
example, you could specify that the height is always one-half of the width. Once you have defined this
formula, the height is automatically updated when the width changes.

All variables have names; it is through these names that you can reference them. In the preceding
illustration, the names automatically assigned by the system are V108 and V109. You can rename these
dimensions; in the following illustration, V322 has been renamed to "height," and V323 has been
renamed to "width."

Part and Sheet Metal Documents

Part1:¥ariable Table

distance w | T | fx| | Help
Type Mame Yalue Fule Formula
Dim height 60,438 mm Formula width /2
i width 120,975 mim
Dim ExtrudedProtrusion_1_FinikeDepth 45,019 mm
< | >

Every variable has a value. This can be a static value or the result of a formula. Along with the value, a
unit type is also stored for each variable. The unit type specifies what type of measurement unit the
value represents. In this example, both of the variables use distance units. You can create Variables for
other unit types such as area and angle. Values are displayed using this unit type and the unit readout

settings.

Part and Sheet Metal Documents _

Part Modeling Examples

When you create a model interactively, you always begin by creating a base feature. You then add
subsequent features to this base feature to completely define the model. When you create a model
using automation, the workflow is identical. Using add methods on the Models collection, you first
create a base feature commonly using either an extruded or revolved protrusion.

Modeling a Part (Visual Basic .NET)

Imports SolidEdgeConstants
Imports System.Runtime.InteropServices

Module Modulel
Sub Main ()
Dim objApplication As SolidEdgeFramework.Application = Nothing
Dim objDocuments As SolidEdgeFramework.Documents = Nothing
Dim objPart As SolidEdgePart.PartDocument = Nothing
Dim objProfileSets As SolidEdgePart.ProfileSets = Nothing
Dim objProfileSet As SolidEdgePart.ProfileSet = Nothing
Dim objProfiles As SolidEdgePart.Profiles = Nothing
Dim objProfile As SolidEdgePart.Profile = Nothing
Dim objRefplanes As SolidEdgePart.RefPlanes = Nothing
Dim objRelations2d As SolidEdgeFrameworkSupport.Relations2d = Nothing
Dim objRelation2d As SolidEdgeFrameworkSupport.Relation2d = Nothing
Dim objLines2d As SolidEdgeFrameworkSupport.Lines2d = Nothing
Dim objLine2d As SolidEdgeFrameworkSupport.Line2d = Nothing
Dim objModels As SolidEdgePart.Models = Nothing
Dim objModel As SolidEdgePart.Model = Nothing
Dim aProfiles As Array

Try
' Connect to a running instance of Solid Edge
objApplication = Marshal.GetActiveObject ("SolidEdge.Application™")

' Get a reference to the documents collection
objDocuments = objApplication.Documents

' Create a new part document
objPart = objApplication.Add("SolidEdge.PartDocument")

' Get a reference to the profile sets collection
objProfileSets = objPart.ProfileSets

' Add a new profile set
objProfileSet = objProfileSets.Add()

' Get a reference to the profiles collection
objProfiles = objProfileSet.Profiles

' Get a reference to the ref planes collection
objRefplanes = objPart.RefPlanes

' Add a new profile
objProfile = objProfiles.Add(objRefplanes.Item(3))

' Get a reference to the lines2d collection

objLines2d objProfile.Lines2d

' Draw the Base Profile

Part and Sheet Metal Documents

objLine2d = objLines2d.AddBy2Points (0, 0, 0.08, 0)

objLine2d = objlLines2d.AddBy2Points(0.08, 0, 0.08, 0.06)
objLine2d = objlLines2d.AddBy2Points(0.08, 0.06, 0.064, 0.06)
objLine2d = objlLines2d.AddBy2Points(0.064, 0.06, 0.064, 0.02)
objLine2d = objLines2d.AddBy2Points(0.064, 0.02, 0.048, 0.02)
objLine2d = objLines2d.AddBy2Points(0.048, 0.02, 0.048, 0.06)
objLine2d = objlLines2d.AddBy2Points(0.048, 0.06, 0.032, 0.06)
objlLine2d = objlLines2d.AddBy2Points(0.032, 0.06, 0.032, 0.02)
objlLine2d = objlLines2d.AddBy2Points(0.032, 0.02, 0.016, 0.02)
objLine2d = objLines2d.AddBy2Points(0.016, 0.02, 0.016, 0.06)
objLine2d = objLines2d.AddBy2Points(0.016, 0.06, 0, 0.06)
objLine2d = objLines2d.AddBy2Points (0, 0.06, 0, 0)

' Define Relations among the Line objects to
objProfile.Relations2d
objRelations2d.AddKeypoint (_

objRelations2d
objRelation2d

objLines2d.Item(1l),
KeypointIndexConstants.igLineEnd,
objLines2d.Item(2),
KeypointIndexConstants.igLineStart)

objRelation2d

objLines2d.Item(2),
KeypointIndexConstants.igLineEnd,
objLines2d.Item(3),
KeypointIndexConstants.igLineStart)

objRelation2d

objLines2d.Item(3),
KeypointIndexConstants.igLineEnd,
objLines2d.Item(4),
KeypointIndexConstants.igLineStart)

objRelation2d

objLines2d.Item(4),
KeypointIndexConstants.igLineEnd,
objLines2d.Item(5),
KeypointIndexConstants.igLineStart)

objRelation2d

objLines2d.Item(5),
KeypointIndexConstants.igLineEnd,
objLines2d.Item(6),
KeypointIndexConstants.igLineStart)

objRelation2d

objLines2d.Item(6),
KeypointIndexConstants.igLineEnd,
objLines2d.Item(7),
KeypointIndexConstants.igLineStart)

objRelation2d

objLines2d.Item(7),
KeypointIndexConstants.igLineEnd,
objLines2d.Item(8),
KeypointIndexConstants.igLineStart)

objRelation2d

objLines2d.Item(8),

objRelations2d.AddKeypoint (

objRelations2d.AddKeypoint (

objRelations2d.AddKeypoint (

objRelations2d.AddKeypoint (

objRelations2d.AddKeypoint (

objRelations2d.AddKeypoint (

objRelations2d.AddKeypoint (

make the Profile closed

Part and Sheet Metal Documents _

KeypointIndexConstants.igLineEnd,
objLines2d.Item(9),
KeypointIndexConstants.igLineStart)

objRelation2d = objRelations2d.AddKeypoint (_
objLines2d.Item(9),
KeypointIndexConstants.igLineEnd,
objLines2d.Item(10), _
KeypointIndexConstants.igLineStart)

objRelation2d = objRelations2d.AddKeypoint (
objLines2d.Item(10), _
KeypointIndexConstants.igLineEnd,
objLines2d.Item(11),
KeypointIndexConstants.igLineStart)

objRelation2d = objRelations2d.AddKeypoint (_
objLines2d.Item(11), _
KeypointIndexConstants.igLineEnd,
objLines2d.Item(12), _
KeypointIndexConstants.igLineStart)

objRelation2d = objRelations2d.AddKeypoint (_
objLines2d.Item(12),
KeypointIndexConstants.igLineEnd,
objLines2d.Item(1l),
KeypointIndexConstants.igLineStart)

' Close the profile

objProfile.End(_
SolidEdgePart.ProfileValidationType.igProfileClosed)

' Hide the profile
objProfile.Visible = False
' Create a new array of profile objects

aProfiles = Array.Createlnstance (GetType (SolidEdgePart.Profile), 1)
aProfiles.SetValue (objProfile, 0)

' Get a reference to the models collection
objModels = objPart.Models

' Create the extended protrusion.
objModel = objModels.AddFiniteExtrudedProtrusion(_
aProfiles.Length,
aProfiles,
SolidEdgePart .FeaturePropertyConstants.igRight,
0.05)
Catch ex As Exception
Console.WritelLine (ex.Message)
Finally
If Not (objModel Is Nothing) Then
Marshal.ReleaseComObject (objModel)
objModel = Nothing
End If
If Not (objModels Is Nothing) Then
Marshal.ReleaseComObject (objModels)
objModels = Nothing
End If
If Not (objRelations2d Is Nothing) Then
Marshal.ReleaseComObject (objRelations2d)

objRelations2d = Nothing

End If

If Not (objLine2d Is Nothing) Then
Marshal.ReleaseComObject (objLine2d)
objLine2d = Nothing

End If

If Not (objLines2d Is Nothing) Then
Marshal.ReleaseComObject (objLines2d)
objLines2d = Nothing

End If

If Not (objRelation2d Is Nothing) Then
Marshal.ReleaseComObject (objRelation2d)
objRelation2d = Nothing

End If

If Not (objRefplanes Is Nothing) Then
Marshal.ReleaseComObject (objRefplanes)
objRefplanes = Nothing

End If

If Not (objProfile Is Nothing) Then
Marshal .ReleaseComObject (objProfile)
objProfile = Nothing

End If

If Not (objProfiles Is Nothing) Then
Marshal.ReleaseComObject (objProfiles)
objProfiles = Nothing

End If

If Not (objProfileSet Is Nothing) Then
Marshal.ReleaseComObject (objProfileSet)
objProfileSet = Nothing

End If

If Not (objProfileSets Is Nothing) Then
Marshal.ReleaseComObject (objProfileSets)
objProfileSets = Nothing

End If

If Not (objPart Is Nothing) Then
Marshal.ReleaseComObject (objPart)
objPart = Nothing

End If

If Not (objDocuments Is Nothing) Then
Marshal.ReleaseComObject (objDocuments)
objDocuments = Nothing

End If

If Not (objApplication Is Nothing) Then
Marshal.ReleaseComObject (objApplication)
objApplication = Nothing

End If

End Try
End Sub
End Module

Modeling a Part (C#)

using SolidEdgeConstants;

using System;

using System.Reflection;

using System.Runtime.InteropServices;

Part and Sheet Metal Documents

Part and Sheet Metal Documents _

namespace MyMacro

{

class Program

{

static void Main(string[] args)

{

SolidEdgeFramework.Application application = null;
SolidEdgeFramework.Documents documents = null;
SolidEdgePart.PartDocument part = null;
SolidEdgePart.ProfileSets profileSets = null;
SolidEdgePart.ProfileSet profileSet = null;
SolidEdgePart.Profiles profiles = null;
SolidEdgePart.Profile profile = null;
SolidEdgePart.RefPlanes refplanes = null;
SolidEdgeFrameworkSupport.Relations2d relations2d = null;
SolidEdgeFrameworkSupport.Relation2d relation2d = null;
SolidEdgeFrameworkSupport.Lines2d lines2d = null;
SolidEdgeFrameworkSupport.Line2d line2d = null;
SolidEdgePart.Models models = null;

SolidEdgePart.Model model = null;

System.Array aProfiles = null;

try
{
// Connect to a running instance of Solid Edge
application = (SolidEdgeFramework.Application)
Marshal.GetActiveObject ("SolidEdge.Application");

// Get a reference to the documents collection
documents = application.Documents;

// Create a new part document
part = (SolidEdgePart.PartDocument)

documents.Add ("SolidEdge.PartDocument", Missing.Value);

// Get a reference to the profile sets collection
profileSets = part.ProfileSets;

// Add a new profile set
profileSet = profileSets.Add();

// Get a reference to the profiles collection
profiles = profileSet.Profiles;

// Get a reference to the ref planes collection
refplanes = part.RefPlanes;

// Add a new profile
profile = profiles.Add(refplanes.Item(3));

// Get a reference to the lines2d collection
lines2d = profile.Lines2d;

// Draw the Base Profile
lines2d.AddBy2Points (0, 0, 0.08, 0);
lines2d.AddBy2Points (0.08, 0, 0.08, 0.06);

Part and Sheet Metal Documents _

lines2d.AddBy2Points (0.08, 0.06, 0.064, 0.06);
lines2d.AddBy2Points (0.064, 0.06, 0.064, 0.02);
lines2d.AddBy2Points (0.064, 0.02, 0.048, 0.02);
lines2d.AddBy2Points (0.048, 0.02, 0.048, 0.06);
lines2d.AddBy2Points (0.048, 0.06, 0.032, 0.06);
lines2d.AddBy2Points (0.032, 0.06, 0.032, 0.02);
lines2d.AddBy2Points (0.032, 0.02, 0.01l6, 0.02);
lines2d.AddBy2Points (0.016, 0.02, 0.01l6, 0.06);
lines2d.AddBy2Points (0.016, 0.06, 0, 0.06);
lines2d.AddBy2Points (0, 0.06, 0, 0);

// Define Relations among the Line objects to make the Profile closed

relations2d
profile.Relations2d;

relation2d relations2d.AddKeypoint (
lines2d.Item(1),
(int)KeypointIndexConstants.igLineEnd,
lines2d.Item(2),
(int)KeypointIndexConstants.igLineStart,
true) ;

relation2d relations2d.AddKeypoint (
lines2d.Item(2),
(int)KeypointIndexConstants.igLineEnd,
lines2d.Item(3),
(int)KeypointIndexConstants.igLineStart,
true) ;

relation2d relations2d.AddKeypoint (
lines2d.Item(3),
(int)KeypointIndexConstants.iglLineEnd,
lines2d.Item(4),
(int)KeypointIndexConstants.igLineStart,
true) ;

relation2d relations2d.AddKeypoint (
lines2d.Item(4),
(int)KeypointIndexConstants.igLineEnd,
lines2d.Item(5),
(int)KeypointIndexConstants.igLineStart,
true) ;

relation2d relations2d.AddKeypoint (
lines2d.Item(5),
(int)KeypointIndexConstants.igLineEnd,
lines2d.Item(6),
(int)KeypointIndexConstants.igLineStart,
true) ;

relation2d relations2d.AddKeypoint (
lines2d.Item(6),
(int)KeypointIndexConstants.igLineEnd,
lines2d.Item(7),
(int)KeypointIndexConstants.igLineStart,
true) ;

relation2d relations2d.AddKeypoint (
lines2d.Item(7),
(int)KeypointIndexConstants.igLineEnd,
lines2d.Item(8),
(int)KeypointIndexConstants.igLineStart,
true) ;

relation2d

relations2d.AddKeypoint (

(SolidEdgeFrameworkSupport.Relations2d)

lines2d.Item(8),
(int)KeypointIndexConstants.igLineEnd,
lines2d.Item(9),
(int)KeypointIndexConstants.igLineStart,
true) ;

relation2d = relations2d.AddKeypoint (
lines2d.Item(10),
(int)KeypointIndexConstants.igLineEnd,
lines2d.Item(11),
(int)KeypointIndexConstants.igLineStart,
true) ;

relation2d = relations2d.AddKeypoint (
lines2d.Item(11),
(int)KeypointIndexConstants.igLineEnd,
lines2d.Item(12),
(int)KeypointIndexConstants.igLineStart,
true) ;

relation2d = relations2d.AddKeypoint (
lines2d.Item(12),
(int)KeypointIndexConstants.igLineEnd,
lines2d.Item(1),
(int)KeypointIndexConstants.igLineStart,
true) ;

// Close the profile
profile.End(

Part and Sheet Metal Documents

SolidEdgePart.ProfileValidationType.igProfileClosed) ;

// Hide the profile
profile.Visible = false;

// Create a new array of profile objects

aProfiles = Array.Createlnstance(typeof (SolidEdgePart.Profile), 1);

aProfiles.SetValue (profile, 0);

// Get a reference to the models collection

models = part.Models;

// Create the extended protrusion.

model = models.AddFiniteExtrudedProtrusion (

aProfiles.Length,
ref aProfiles,

SolidEdgePart.FeaturePropertyConstants.igRight,

0.05,
Missing.Value,
Missing.Value,
Missing.Value,
Missing.Value) ;
}
catch (System.Exception ex)
{
Console.WriteLine (ex.Message) ;
}
finally
{
if (model != null)
{

Marshal .ReleaseComObject (model) ;
model = null;

}

if (models !'= null)

{
Marshal .ReleaseComObject (models) ;
models = null;

if (line2d !'= null)

Marshal .ReleaseComObject (1ine2d) ;
line2d = null;

if (lines2d != null)

Marshal .ReleaseComObject (lines2d) ;
lines2d = null;

if (relation2d != null)

Marshal .ReleaseComObject (relation2d) ;
relation2d = null;

if (relations2d != null)

Marshal .ReleaseComObject (relations2d) ;
relations2d = null;

if (refplanes != null)

Marshal .ReleaseComObject (refplanes) ;
refplanes = null;

if (profile != null)

Marshal .ReleaseComObject (profile);
profile = null;

if (profileSet != null)

Marshal .ReleaseComObject (profileSet) ;
profileSet = null;

if (profileSets != null)

Marshal .ReleaseComObject (profileSets) ;
profileSets = null;

if (part != null)

Marshal .ReleaseComObject (part) ;
part = null;
}
if (documents != null)
{
Marshal .ReleaseComObject (documents) ;
documents = null;

Part and Sheet Metal Documents

Part and Sheet Metal Documents

}

if (application != null)

{
Marshal.ReleaseComObject (application) ;
application = null;

The previous code examples produce the following model.

6-1 - Extended Protrusion

Part and Sheet Metal Documents

Variables Examples

All variable automation is accessed through the Variables collection and Variable objects. The Variables
collection serves two purposes: it allows you to create and access variable objects, and it allows you to
work with dimensions as variables.

The Variables collection supports an Add method to create new Variable objects. It also supports the
standard methods for iterating through the members of the collection. The following program connects
to the Variables collection, creates three new variables, and lists them.

Units with variables work the same as units in the system. Units are stored using internal values and
then are appropriately converted for display. For example, all length units are stored internally as
meters. When these units are displayed in the Variable Table, they are converted to the units specified
in the Properties dialog box.

In addition to the properties and methods on the Variables collection, properties and methods are also
available on the Variable objects. These properties and methods read and set variable names, define
formulas, set values, and specify units of measure.

Variable Table Example(Visual Basic .NET)

Imports System.Runtime.InteropServices
Module Modulel
Sub Main ()

Dim objApplication As SolidEdgeFramework.Application = Nothing

Dim objPart As SolidEdgePart.PartDocument = Nothing

Dim objVariables As SolidEdgeFramework.Variables = Nothing

Dim objVariable As SolidEdgeFramework.variable = Nothing

Try

' Connect to a running instance of Solid Edge

objApplication = Marshal.GetActiveObject ("SolidEdge.Application™)
' Get a reference to the active document
objPart = objApplication.ActiveDocument
' Get a reference to the variables collection
objVariables = objPart.Variables

'Add a variable
objVariable = objVariables.Add("NewVar", "1.5")

'Change the formula of the variable to a function
objVariable.Formula = Math.Sin(0.1).ToString()

'Change the name of the wvariable
objVariable.Name = "NewName"

'Change the value of the variable. This will not change
'the value of the wvariable
objVariable.Value = 123

'Change the formula of the variable to a static value
'This causes the formula to be removed and sets the value

Part and Sheet Metal Documents

objVariable.Formula = "456"

'Change the value of the variable. It works now
objVariable.Value = 789

'Delete the variable
objVariable.Delete ()
Catch ex As Exception
Console.WritelLine (ex.Message)
Finally
If Not (objVariable Is Nothing) Then
Marshal.ReleaseComObject (objVariable)
objVariable = Nothing
End If
If Not (objvVariables Is Nothing) Then
Marshal.ReleaseComObject (objVariables)
objVariables = Nothing
End If
If Not (objPart Is Nothing) Then
Marshal.ReleaseComObject (objPart)
objPart = Nothing
End If
If Not (objApplication Is Nothing) Then
Marshal.ReleaseComObject (objApplication)
objApplication = Nothing
End If
End Try
End Sub
End Module

Variable Table Example(C#)

using SolidEdgeFramework;
using System;
using System.Runtime.InteropServices;

namespace MyMacro
{
class Program
{
static void Main(string[] args)
{
SolidEdgeFramework.Application application = null;
SolidEdgePart.PartDocument part = null;

SolidEdgeFramework.Variables variables = null;
SolidEdgeFramework.variable variable = null;
try

{
// Connect to a running instance of Solid Edge
application = (SolidEdgeFramework.Application)
Marshal.GetActiveObject ("SolidEdge.Application");

// Get a reference to the active document
part = (SolidEdgePart.PartDocument)

application.ActiveDocument;

// Get a reference to the variables collection

Part and Sheet Metal Documents

variables = (SolidEdgeFramework.Variables)part.Variables;

// Add a variable
variable = (SolidEdgeFramework.variable)
variables.Add ("NewVar", "1.5", UnitTypeConstants.igUnitDistance);

// Change the formula of the variable to a function
variable.Formula = Math.Sin(0.1).ToString();

// Change the name of the variable
variable.Name = "NewName";

// Change the value of the variable. This will not change
// the value of the variable
variable.Value = 123;

// Change the formula of the variable to a static value
// This causes the formula to be removed and sets the value
variable.Formula = "456";

// Change the value of the variable. It works now
variable.Value = 789;

//Delete the variable
variable.Delete () ;

}

catch (System.Exception ex)

{

Console.WritelLine (ex.Message) ;

}
finally

{

if (variable != null)

{
Marshal .ReleaseComObject (variable) ;
variable = null;

if (variables != null)

Marshal .ReleaseComObject (variables) ;
variables = null;

if (part != null)

Marshal .ReleaseComObject (part) ;
part = null;

if (application != null)

Marshal .ReleaseComObject (application) ;
application = null;

Part and Sheet Metal Documents

Working with Dimensions—Overview

Solid Edge allows you to place and edit dimensions on elements. In the Profile environment, dimension
objects control the size and orientation of geometry.

Dimensions can be linear, radial, or angular. Dimensions supply information about the measurements of
elements, such as the angle of a line or the distance between two points. A dimension is related to the
element on which it is placed. In the Profile environment, the dimensions control the geometry; if the
dimension changes, the geometry updates.

In a Part document, the Dimensions collection is accessed through the Profile object. The Dimensions
collection provides the methods for placing dimensions and for iterating through all the dimensions on
the entire sheet or profile.

Linear Dimensions

A linear dimension measures the distance between two or more elements, the length of a line, or an
arc's length. For a complete description of the properties that define how a linear dimension is placed,
see the Programming with Solid Edge on-line Help.

Radial Dimensions

Radial dimensions measure the radius or diameter at a point on the element. These dimensions are
similar except that they show the radius or diameter value depending on the type. With the
ProjectionArc and TrackAngle properties, you can define the measurement point on the element. For a
complete description of the properties, see the Programming with Solid Edge on-line Help.

Angular Dimensions

Angular dimensions measure the angle between two lines or three points. An angular dimension
defines two intersecting vectors and four minor sectors. These sectors are distinguished according to
whether the angle is measured in the sector where the vector direction goes outward from the
intersection point or comes inward, and whether the angle is measured in the clockwise or
counterclockwise direction.

The angles are always measured in the counterclockwise direction with both vector directions going
outward from the intersection point (sector one condition). To measure in any other angle, certain
properties are set so that the dimension object modifies the vector direction and computes the angle.

Part and Sheet Metal Documents

Placing Dimensions

In the Profile environment, driving dimensions control the elements to which they refer. When you edit
a driving dimension, the geometry of the element that is related to that dimension is modified.

You can place dimensions only on existing elements. A set of Add methods is provided on the
Dimensions collection, one for each type of dimension. The element to which the dimension is attached
determines the type of dimension (driving or driven) that will be placed. The Add methods on the
Dimensions collection object take minimal input and place the dimensions with specific default values.
For a complete description of the add methods and properties available for setting the default values,
see the Programming with Solid Edge on-line Help.

When you place dimensions between two elements interactively, the dimensions are measured at a
specific location on an element. For example, when you place a dimension between the end points of
two lines, you select one end of each line. When you place dimensions through automation, you specify
a point on the element and a key point flag to define the dimension.

In the following program, four lines are drawn and connected with key point relationships. The lengths
of two of the lines and the distance between two lines are dimensioned. The dimension is set to be a
driving dimension so it will control the length and position of the geometry. The sample also shows how
to modify a dimension style by changing the units of measurement of one of the dimensions to meters.

Placing Dimensions Example (Visual Basic .NET)

Imports SolidEdgeConstants
Imports System.Runtime.InteropServices

Module Modulel
Sub Main ()
Dim objApplication As SolidEdgeFramework.Application = Nothing
Dim objDocuments As SolidEdgeFramework.Documents = Nothing
Dim objPart As SolidEdgePart.PartDocument = Nothing
Dim objProfileSets As SolidEdgePart.ProfileSets = Nothing
Dim objProfileSet As SolidEdgePart.ProfileSet = Nothing
Dim objProfiles As SolidEdgePart.Profiles = Nothing
Dim objProfile As SolidEdgePart.Profile = Nothing
Dim objRefPlanes As SolidEdgePart.RefPlanes = Nothing
Dim objRefPlane As SolidEdgePart.RefPlane = Nothing
Dim objLines2d As SolidEdgeFrameworkSupport.Lines2d = Nothing
Dim aLine2d (0 To 3) As SolidEdgeFrameworkSupport.Line2d
Dim objRelations2d As SolidEdgeFrameworkSupport.Relations2d = Nothing
Dim objDimensions As SolidEdgeFrameworkSupport.Dimensions = Nothing
Dim objDimension As SolidEdgeFrameworkSupport.Dimension = Nothing
Dim objDimStyle As SolidEdgeFrameworkSupport.DimStyle = Nothing
Dim i As Integer

Try
' Connect to a running instance of Solid Edge
objApplication = Marshal.GetActiveObject ("SolidEdge.Application™)

' Get a reference to the documents collection
objDocuments = objApplication.Documents

' Add a Part document

Part and Sheet Metal Documents

objPart = objDocuments.Add("SolidEdge.PartDocument")

' Get a reference to the ref planes collection

objRefPlanes = objPart.RefPlanes

' Get a reference to the first reference plane

objRefPlane = objRefPlanes.Item(1l)

' Get a reference to the profile sets collection

objProfileSets = objPart.ProfileSets

' Add a new profile set
objProfileSet = objProfileSets.Add()

' Get a reference to the profiles collection

objProfiles = objProfileSet.Profiles

' Add a new profile on the selected reference plane

objProfile = objProfiles.Add (objRefPlane)

' Get a reference to the lines 2d collection

objLines2d = objProfile.Lines2d

' Get a reference to the relations 2d collection

objRelations2d = objProfile.Relations2d

' Get a reference to the dimensions collection
objDimensions = objProfile.Dimensions

' Draw the geometry.

aline2d (0) = objLines2d.AddBy2Points
aline2d (1) = objLines2d.AddBy2Points
aline2d(2) = objlLines2d.AddBy2Points
aline2d(3) = objlLines2d.AddBy2Points

' Add endpoint relationships between the lines

objRelations2d.AddKeypoint (_
aLine2d (0), _
KeypointIndexConstants.igLineEnd,
aLine2d (1), _
KeypointIndexConstants.igLineStart)

objRelations2d.AddKeypoint (_
aLine2d (1), _
KeypointIndexConstants.igLineEnd,
aLine2d (2), _
KeypointIndexConstants.igLineStart)

objRelations2d.AddKeypoint (_
aLine2d(2), _
KeypointIndexConstants.igLineEnd,
aLine2d (3), _
KeypointIndexConstants.igLineStart)

objRelations2d.AddKeypoint (_

—_~ o~~~

+ 0)
1, 0.1)
0, 0.05)
0, 0)

Part and Sheet Metal Documents

alLine2d (3),
KeypointIndexConstants.igLineEnd,
aLine2d (0), _
KeypointIndexConstants.igLineStart)

' Add dimensions, and change the dimension units to meters

objDimension = objDimensions.AddLength(aLine2d (1))

objDimension.Constraint = True

objDimStyle = objDimension.Style

objDimStyle.PrimaryUnits = _
DimLinearUnitConstants.igDimStyleLinearMeters

objDimension = objDimensions.AddLength(alLine2d(3))

objDimension.Constraint = True

objDimStyle = objDimension.Style

objDimStyle.PrimaryUnits = _
DimLinearUnitConstants.igDimStyleLinearMeters

objDimension = objDimensions.AddDistanceBetweenObjects (_
alLine2d (1), 0.1, 0.1, 0, False,
aLine2d(2), 0, 0.05, 0, False)

objDimension.Constraint = True

objDimStyle = objDimension.Style

objDimStyle.PrimaryUnits = _
DimLinearUnitConstants.igDimStyleLinearMeters

Catch ex As Exception
Console.WritelLine (ex.Message)
Finally
For 1 = 0 To alLine2d.Length - 1
If Not (aLine2d(i) Is Nothing) Then
Marshal .ReleaseComObject (aLine2d (i))
aline2d (i) = Nothing
End If
Next
If Not (objDimStyle Is Nothing) Then
Marshal .ReleaseComObject (objDimStyle)
objDimStyle = Nothing
End If
If Not (objDimension Is Nothing) Then
Marshal.ReleaseComObject (objDimension)
objDimension = Nothing
End If
If Not (objDimensions Is Nothing) Then
Marshal.ReleaseComObject (objDimensions)
objDimensions = Nothing
End If
If Not (objRelations2d Is Nothing) Then
Marshal.ReleaseComObject (objRelations2d)
objRelations2d = Nothing
End If
If Not (objLines2d Is Nothing) Then
Marshal.ReleaseComObject (objLines2d)
objLines2d = Nothing
End If
If Not (objRefPlane Is Nothing) Then
Marshal.ReleaseComObject (objRefPlane)

objRefPlane = Nothing

End If

If Not (objRefPlanes Is Nothing) Then
Marshal.ReleaseComObject (objRefPlanes)
objRefPlanes = Nothing

End If

If Not (objProfile Is Nothing) Then
Marshal.ReleaseComObject (objProfile)
objProfile = Nothing

End If

If Not (objProfiles Is Nothing) Then
Marshal .ReleaseComObject (objProfiles)
objProfiles = Nothing

End If

If Not (objProfileSet Is Nothing) Then
Marshal .ReleaseComObject (objProfileSet)
objProfileSet = Nothing

End If

If Not (objProfileSets Is Nothing) Then
Marshal.ReleaseComObject (objProfileSets)
objProfileSets = Nothing

End If

If Not (objPart Is Nothing) Then
Marshal.ReleaseComObject (objPart)
objPart = Nothing

End If

If Not (objDocuments Is Nothing) Then
Marshal.ReleaseComObject (objDocuments)
objDocuments = Nothing

End If

If Not (objApplication Is Nothing) Then
Marshal.ReleaseComObject (objApplication)
objApplication = Nothing

End If

End Try
End Sub
End Module

Placing Dimensions Example (C#)

using SolidEdgeConstants;

using System;

using System.Reflection;

using System.Runtime.InteropServices;

namespace MyMacro

{

class Program

{
static void Main(string[] args)

{

Part and Sheet Metal Documents _

SolidEdgeFramework.Application application = null;

SolidEdgeFramework.Documents documents = null;
SolidEdgePart.PartDocument part = null;
SolidEdgePart.ProfileSets profileSets = null;
SolidEdgePart.ProfileSet profileSet = null;
SolidEdgePart.Profiles profiles = null;

Part and Sheet Metal Documents

SolidEdgePart.Profile profile = null;
SolidEdgePart.RefPlanes refPlanes = null;
SolidEdgePart.RefPlane refPlane = null;
SolidEdgeFrameworkSupport.Lines2d lines2d = null;
SolidEdgeFrameworkSupport.Line2d[] aLine2d =

new SolidEdgeFrameworkSupport.Line2d[4];
SolidEdgeFrameworkSupport.Relations2d relations2d = null;
SolidEdgeFrameworkSupport.Dimensions dimensions = null;
SolidEdgeFrameworkSupport.Dimension dimension = null;
SolidEdgeFrameworkSupport.DimStyle dimStyle = null;

try
{
// Connect to a running instance of Solid Edge
application = (SolidEdgeFramework.Application)
Marshal.GetActiveObject ("SolidEdge.Application");

// Get a reference to the documents collection
documents = application.Documents;

// Add a Part document
part = (SolidEdgePart.PartDocument)
documents.Add ("SolidEdge.PartDocument", Missing.Value) ;

// Get a reference to the ref planes collection
refPlanes = part.RefPlanes;

// Get a reference to the first reference plane
refPlane = refPlanes.Item(1l);

// Get a reference to the profile sets collection
profileSets = part.ProfileSets;

// Add a new profile set
profileSet = profileSets.Add();

// Get a reference to the profiles collection
profiles = profileSet.Profiles;

// Add a new profile on the selected reference plane
profile = profiles.Add(refPlane);

// Get a reference to the lines 2d collection
lines2d = profile.Lines2d;

// Get a reference to the relations 2d collection
relations2d = (SolidEdgeFrameworkSupport.Relations2d)
profile.Relations2d;

// Get a reference to the dimensions collection
dimensions = (SolidEdgeFrameworkSupport.Dimensions)
profile.Dimensions;

// Draw the geometry.

aLline2d[0] = lines2d.AddBy2Points (0, 0, 0.1, 0);
alLine2d[1] lines2d.AddBy2Points (0.1, 0, O.
aline2d[2] = lines2d.AddBy2Points (0.1, 0.1,

Part and Sheet Metal Documents

aline2d[3] = lines2d.AddBy2Points (0, 0.05, 0, 0);

// Add endpoint relationships between the lines
relations2d.AddKeypoint (
alLine2d[0],
(int)KeypointIndexConstants.igLineEnd,
alLine2d([1],
(int)KeypointIndexConstants.igLineStart,
Missing.Value) ;

relations2d.AddKeypoint (
aLine2d([1],
(int)KeypointIndexConstants.iglLineEnd,
aLine2d([2],
(int)KeypointIndexConstants.igLineStart,
Missing.Value) ;

relations2d.AddKeypoint (
aLine2d([2],
(int)KeypointIndexConstants.igLineEnd,
aline2d[3],
(int)KeypointIndexConstants.igLineStart,
Missing.Value) ;

relations2d.AddKeypoint (
alLine2d[3],
(int)KeypointIndexConstants.igLineEnd,
aLine2d[0],
(int)KeypointIndexConstants.igLineStart,
Missing.Value) ;

// Add dimensions, and change the dimension units to meters

dimension = dimensions.AddLength(alLine2d[1]);

dimension.Constraint = true;

dimStyle = dimension.Style;

dimStyle.PrimaryUnits =
SolidEdgeFrameworkSupport.DimLinearUnitConstants.igDimStylelLinearMeters;

dimension = dimensions.AddLength(alLine2d[3]);

dimension.Constraint = true;

dimStyle = dimension.Style;

dimStyle.PrimaryUnits =
SolidEdgeFrameworkSupport.DimLinearUnitConstants.igDimStylelLinearMeters;

dimension = dimensions.AddDistanceBetweenObjects (
aline2d[(1], 0.1, 0.1, 0, false, aLine2d[2], 0, 0.05, 0, false);
dimension.Constraint = true;
dimStyle = dimension.Style;
dimStyle.PrimaryUnits =
SolidEdgeFrameworkSupport.DimLinearUnitConstants.igDimStylelLinearMeters;
}
catch (System.Exception ex)
{
Console.WritelLine (ex.Message) ;
}
finally
{

for (int i = 0; i < alLine2d.Length; i++)
{
if (alLine2d[i]
{
Marshal .ReleaseComObject (aLine2d[i]) ;
alLine2d[i] = null;

!= null)

}

if (dimStyle != null)

{
Marshal .ReleaseComObject (dimStyle) ;
dimStyle = null;

if (dimension != null)

Marshal .ReleaseComObject (dimension) ;
dimension = null;

if (dimensions != null)

Marshal .ReleaseComObject (dimensions) ;
dimensions = null;

if (relations2d != null)

Marshal .ReleaseComObject (relations2d) ;
relations2d = null;

if (lines2d != null)

Marshal .ReleaseComObject (lines2d) ;
lines2d = null;

if (refPlane != null)

Marshal .ReleaseComObject (refPlane) ;
refPlane = null;

if (refPlanes != null)

Marshal .ReleaseComObject (refPlanes) ;
refPlanes = null;

if (profile != null)

Marshal .ReleaseComObject (profile);
profile = null;

if (profiles != null)

Marshal .ReleaseComObject (profiles);
profiles = null;

}

if (profileSet != null)

{
Marshal .ReleaseComObject (profileSet) ;
profileSet = null;

Part and Sheet Metal Documents

Part and Sheet Metal Documents _

}
if (profileSets != null)

{
Marshal.ReleaseComObject (profileSets) ;
profileSets = null;

}

if (part != null)

Marshal.ReleaseComObject (part) ;
part = null;

if (documents != null)

Marshal .ReleaseComObject (documents) ;
documents = null;

if (application != null)

Marshal.ReleaseComObject (application) ;
application = null;

Dimensions via Variables

When working interactively with the Variable Table, both variables and dimensions are displayed in the
table. This enables you to create formulas using the values of dimensions and also have formulas that
drive the values of dimensions. In this workflow, there is no apparent difference between variables and
dimensions. Internally, however, variables and dimensions are two distinct types of objects that have
their own unique collections, properties, and methods.

The Variables collection allows you to work with dimensions in the context of variables through several
methods on the collection. These methods include Edit, GetFormula, GetName, PutName, Query, and
Translate. The following program uses dimensions through the Variables collection. The following
programs assume that Solid Edge is running and in the Profile environment.

Accessing Dimensions through the Variable Table (Visual Basic .NET)

Imports System.Runtime.InteropServices
Module Modulel
Sub Main ()
Dim objApplication As SolidEdgeFramework.Application = Nothing
Dim objPart As SolidEdgePart.PartDocument = Nothing
Dim objProfileSets As SolidEdgePart.ProfileSets = Nothing
Dim objProfileSet As SolidEdgePart.ProfileSet = Nothing
Dim objProfiles As SolidEdgePart.Profiles = Nothing
Dim objProfile As SolidEdgePart.Profile = Nothing
Dim objVariables As SolidEdgeFramework.Variables = Nothing
Dim objVariable As Object = Nothing
Dim objLines2d As SolidEdgeFrameworkSupport.Lines2d = Nothing

Dim
Dim
Dim
Dim
Dim
Dim
Dim
Try

Part and Sheet Metal Documents

objLine2d As SolidEdgeFrameworkSupport.Line2d = Nothing
objDimensions As SolidEdgeFrameworkSupport.Dimensions = Nothing
objDimensionl As SolidEdgeFrameworkSupport.Dimension = Nothing
objDimension2 As SolidEdgeFrameworkSupport.Dimension = Nothing
objVariableList As SolidEdgeFramework.VariableList = Nothing
sName As String

sFormula As String

Connect to a running instance of Solid Edge

objApplication = Marshal.GetActiveObject ("SolidEdge.Application™)

Get a reference to the active document

objPart = objApplication.ActiveDocument

Get a reference to the active document

objProfileSets = objPart.ProfileSets

Get a reference to the profile set

objProfileSet = objProfileSets.Item(objProfileSets.Count)

Get a reference to the profiles collection

objProfiles = objProfileSet.Profiles

Get a reference to the profile

objProfile = objProfiles.Item(1l)

Get a reference to the variables collection

objVariables = objPart.Variables

Get a reference to the lines2d collection

objLines2d = objProfile.Lines2d

Get a reference to the dimensions collection

objDimensions = objProfile.Dimensions

Create a new line

objLine2d = objlLines2d.AddBy2Points (0, 0, 0.1, 0.1)

Place a dimension on the line to control its length

objDimensionl = objDimensions.AddLength (objLine2d)

Make the dimension a driving dimension

objDimensionl.Constraint = True

Create a second line

objLine2d = objlLines2d.AddBy2Points (0, 0.1, 0.1, 0.2)

Place a dimension on the line to control its length

objDimension2 = objDimensions.AddLength (objLine2d)

Make the dimension a driving dimension

objDimension2.Constraint = True

Assign a name to the dimension placed on the first line

objVariables.PutName (objDimensionl, "Dimensionl")

Retrieve the system name of the second dimension, and display

Part and Sheet Metal Documents _

' it in the debug window

sName = objVariables.GetName (objDimension2)
Console.WritelLine (String.Format ("Dimension = {0}", sName))

' Edit the formula of the second dimension to be half
' the value of the first dimension
objVariables.Edit (sName, "Dimensionl/2.0")

' Retrieve the formula from the dimension, and print it to the
' debug window to verify

sFormula = objVariables.GetFormula (sName)

Console.WritelLine (String.Format ("Formula = {0}", sFormula))

' This demonstrates the ability to reference a dimension object
' by its name
objDimensionl = objVariables.Translate("Dimensionl")

' To verify a dimension object was returned, change its
' TrackDistance property to cause the dimension to change
objDimensionl.TrackDistance = objDimensionl.TrackDistance * 2

' Use the Query method to list all all user-defined

' variables and user-named Dimension objects and

' display in the debug window

objVariableList = objVariables.Query ("*")

For Each objVariable In objVariablelList
Console.WritelLine (objVariables.GetName (objVariable))

Next

Catch ex As Exception
Console.WritelLine (ex.Message)
Finally

If Not (objVariablelList Is Nothing) Then
Marshal.ReleaseComObject (objVariablelList)
objVariableList = Nothing

End If

If Not (objDimension2 Is Nothing) Then
Marshal.ReleaseComObject (objDimension2)
objDimension2 = Nothing

End If

If Not (objDimensionl Is Nothing) Then
Marshal.ReleaseComObject (objDimensionl)
objDimensionl = Nothing

End If

If Not (objDimensions Is Nothing) Then
Marshal.ReleaseComObject (objDimensions)
objDimensions = Nothing

End If

If Not (objLine2d Is Nothing) Then
Marshal.ReleaseComObject (objLine2d)
objLine2d = Nothing

End If

If Not (objlLines2d Is Nothing) Then
Marshal.ReleaseComObject (objLines2d)
objLines2d = Nothing

End If

If Not (objVariable Is Nothing) Then

Marshal .ReleaseComObject (objVariable)
objVariable = Nothing

End If

If Not (objVariables Is Nothing) Then
Marshal.ReleaseComObject (objVariables)
objVariables = Nothing

End If

If Not (objProfile Is Nothing) Then
Marshal.ReleaseComObject (objProfile)
objProfile = Nothing

End If

If Not (objProfiles Is Nothing) Then
Marshal.ReleaseComObject (objProfiles)
objProfiles = Nothing

End If

If Not (objProfileSet Is Nothing) Then
Marshal.ReleaseComObject (objProfileSet)
objProfileSet = Nothing

End If

If Not (objProfileSets Is Nothing) Then
Marshal.ReleaseComObject (objProfileSets)
objProfileSets = Nothing

End If

If Not (objPart Is Nothing) Then
Marshal.ReleaseComObject (objPart)
objPart = Nothing

End If

If Not (objApplication Is Nothing) Then
Marshal.ReleaseComObject (objApplication)
objApplication = Nothing

End If

End Try
End Sub
End Module

Part and Sheet Metal Documents

Accessing Dimensions through the Variable Table (C#)
using SolidEdgeFramework;

using System;

using System.Runtime.InteropServices;

namespace MyMacro

{

class Program

{

static void Main(string[] args)

{

SolidEdgeFramework.Application application
SolidEdgePart.PartDocument part = null;

SolidEdgePart.ProfileSets profileSets = null;
SolidEdgePart.ProfileSet profileSet = null;

SolidEdgePart.Profiles profiles = null;
SolidEdgePart.Profile profile = null;

SolidEdgeFramework.Variables variables = null;

Object oVariable = null;
SolidEdgeFrameworkSupport.Lines2d lines2d
SolidEdgeFrameworkSupport.Line2d line2d =

null;

null;
null;

Part and Sheet Metal Documents _

SolidEdgeFrameworkSupport.Dimensions dimensions = null;
SolidEdgeFrameworkSupport.Dimension dimensionl = null;
SolidEdgeFrameworkSupport.Dimension dimension2 = null;
SolidEdgeFramework.VariablelList variableList = null;

String sName;
String sFormula;

try
{
// Connect to a running instance of Solid Edge
application = (SolidEdgeFramework.Application)
Marshal.GetActiveObject ("SolidEdge.Application");

// Get a reference to the active document
part = (SolidEdgePart.PartDocument)
application.ActiveDocument;

// Get a reference to the profile sets collection
profileSets = part.ProfileSets;

// Get a reference to the profile set
profileSet = profileSets.Item(profileSets.Count);

// Get a reference to the profiles collection
profiles = profileSet.Profiles;

// Get a reference to the profile
profile = profiles.Item(1l);

// Get a reference to the variables collection
variables = (SolidEdgeFramework.Variables)part.Variables;

// Get a reference to the lines2d collection
lines2d = profile.Lines2d;

// Get a reference to the dimensions collection
dimensions = (SolidEdgeFrameworkSupport.Dimensions)
profile.Dimensions;

// Create a line
line2d = lines2d.AddBy2Points (0, 0, 0.1, 0.1);

// Place a dimension on the line to control its length
dimensionl = dimensions.AddLength (line2d) ;

// Make the dimension a driving dimension
dimensionl.Constraint = true;

// Create a second line
line2d = lines2d.AddBy2Points (0, 0.1, 0.1, 0.2);

// Place a dimension on the line to control its length
dimension2 = dimensions.AddLength(line2d) ;

// Make the dimension a driving dimension
dimension2.Constraint = true;

Part and Sheet Metal Documents _

// Assign a name to the dimension placed on the first line
variables.PutName (dimensionl, "Dimensionl");

// Retrieve the system name of the second dimension, and display
// it in the debug window

sName = variables.GetName (dimension?2) ;
Console.WritelLine(String.Format ("Dimension = {0}", sName));

// Edit the formula of the second dimension to be half
// the value of the first dimension
variables.Edit (sName, "Dimensionl/2.0");

// Retrieve the formula from the dimension, and print it to the
// debug window to verify

sFormula = variables.GetFormula (sName) ;
Console.WriteLine(String.Format ("Formula = {0}", sFormula));

// This demonstrates the ability to reference a dimension object

// by its name

dimensionl = (SolidEdgeFrameworkSupport.Dimension)
variables.Translate ("Dimensionl") ;

// To verify a dimension object was returned, change its
// TrackDistance property to cause the dimension to change
dimensionl.TrackDistance = dimensionl.TrackDistance * 2;

// Use the Query method to list all all user-defined

// variables and user—-named Dimension objects and

// display in the debug window

variableList = (SolidEdgeFramework.VariablelList)
variables.Query ("*", null, null, false);

for (int i = 1; 1 <= variablelList.Count; i++)

{
oVariable = variableList.Item(i);
Console.WritelLine (variables.GetName (oVariable)) ;

}

catch (System.Exception ex)

{

Console.WriteLine (ex.Message) ;

}
finally

{

if (variableList != null)

{
Marshal .ReleaseComObject (variablelList) ;
variablelList = null;

if (dimension2 != null)

Marshal.ReleaseComObject (dimension?2) ;
dimension2 = null;

}

if (dimensionl !'= null)

{

Marshal .ReleaseComObject (dimensionl) ;
dimensionl = null;

}

if (dimensions != null)

{
Marshal .ReleaseComObject (dimensions) ;
dimensions = null;

if (line2d !'= null)

Marshal .ReleaseComObject (1ine2d) ;
line2d = null;

if (lines2d != null)

Marshal .ReleaseComObject (lines2d) ;
lines2d = null;

if (oVariable != null)

Marshal .ReleaseComObject (oVariable) ;
oVariable = null;

if (variables != null)

Marshal .ReleaseComObject (variables) ;
variables = null;

if (profile != null)

Marshal .ReleaseComObject (profile);
profile = null;

if (profiles != null)

Marshal .ReleaseComObject (profiles);
profiles = null;

if (profileSet != null)

Marshal .ReleaseComObject (profileSet) ;
profileSet = null;

if (profileSets != null)

Marshal .ReleaseComObject (profileSets) ;
profileSets = null;

if (part != null)

Marshal .ReleaseComObject (part) ;
part = null;
}
if (application != null)
{
Marshal .ReleaseComObject (application) ;
application = null;

Part and Sheet Metal Documents

Part and Sheet Metal Documents

Assemblies Documents

Chapter 7 - Assemblies Documents

An assembly is a document that is a container for OLE links to other documents that contain parts or
other assemblies. An assembly document is used exclusively for assemblies and has its own automation
interface. This programming interface allows you to place parts into an assembly and examine existing
parts and subassemblies and their relationships.

Reference Axes

A reference axis defines the axis of revolution for a revolved feature. Reference axes are usually created
in the Profile environment when a user defines the profile of the revolution. Two objects—the
collection object, RefAxes, and the instance object, RefAxis—are available to enable you to manipulate
reference axes in your models.

The following programs connect to a running instance of Solid Edge, creates an Assembly document and
places an assembly reference plane using the AddAngularByAngle method. Then the program creates a
Part document and places a reference plane using the AddParallelByDistance method.

Creating Reference Elements (Visual Basic .NET)

Imports SolidEdgePart
Imports System.Runtime.InteropServices
Module Modulel

Sub Main ()
Dim objApplication As SolidEdgeFramework.Application = Nothing
Dim objDocuments As SolidEdgeFramework.Documents = Nothing

Dim objAssembly As SolidEdgeAssembly.AssemblyDocument = Nothing
Dim objAsmRefPlanes As SolidEdgeAssembly.AsmRefPlanes = Nothing
Dim objAsmRefPlane As SolidEdgeAssembly.AsmRefPlane = Nothing
Dim objPPlane As SolidEdgeAssembly.AsmRefPlane = Nothing

Dim objPart As SolidEdgePart.PartDocument = Nothing

Dim objRefPlanes As SolidEdgePart.RefPlanes = Nothing

Dim objRefPlane As SolidEdgePart.RefPlane = Nothing

Try
' Connect to a running instance of Solid Edge

objApplication = Marshal.GetActiveObject ("SolidEdge.Application™)

' Access the Documents collection object

objDocuments = objApplication.Documents

' Add an Assembly document

objAssembly = objDocuments.Add("SolidEdge.AssemblyDocument")

' Access the AsmRefPlanes collection object

objAsmRefPlanes = objAssembly.AsmRefPlanes

' Create a reference plane at an angle to a

principal reference plane

objPPlane objAsmRefPlanes.Item(2)

' Add a new reference plane

objAsmRefPlane = objAsmRefPlanes.AddAngularByAngle (_
objPPlane,

Assemblies Documents

(2 * Math.PI / 3), _
objAsmRefPlanes.Item (1),
ReferenceElementConstants.igPivotEnd,
ReferenceElementConstants.igNormalSide,
True)

' Add a Part document
objPart = objDocuments.Add("SolidEdge.PartDocument")

' Access the RefPlanes collection object
objRefPlanes = objPart.RefPlanes

' Create a global reference plane parallel to the top reference plane
objRefPlane = objRefPlanes.AddParallelByDistance (
objRefPlanes.Item(1l),
0.1, _
ReferenceElementConstants.igNormalSide,
False)

Catch ex As Exception
Console.WritelLine (ex.Message)
Finally

If Not (objRefPlane Is Nothing) Then
Marshal.ReleaseComObject (objRefPlane)
objRefPlane = Nothing

End If

If Not (objRefPlanes Is Nothing) Then
Marshal.ReleaseComObject (objRefPlanes)
objRefPlanes = Nothing

End If

If Not (objPart Is Nothing) Then
Marshal.ReleaseComObject (objPart)
objPart = Nothing

End If

If Not (objPPlane Is Nothing) Then
Marshal .ReleaseComObject (objPPlane)
objPPlane = Nothing

End If

If Not (objAsmRefPlane Is Nothing) Then
Marshal.ReleaseComObject (objAsmRefPlane)
objAsmRefPlane = Nothing

End If

If Not (objAsmRefPlanes Is Nothing) Then
Marshal.ReleaseComObject (objAsmRefPlanes)
objAsmRefPlanes = Nothing

End If

If Not (objAssembly Is Nothing) Then
Marshal.ReleaseComObject (objAssembly)
objAssembly = Nothing

End If

If Not (objDocuments Is Nothing) Then
Marshal.ReleaseComObject (objDocuments)
objDocuments = Nothing

End If

If Not (objApplication Is Nothing) Then
Marshal.ReleaseComObject (objApplication)
objApplication = Nothing

Assemblies Documents

End If

End Try
End Sub
End Module

Creating Reference Elements (C#)

using SolidEdgeFramework;

using SolidEdgePart;

using System;

using System.Reflection;

using System.Runtime.InteropServices;

namespace MyMacro
{
class Program
{
static void Main(string[] args)
{
SolidEdgeFramework.Application application = null;
SolidEdgeFramework.Documents documents = null;
SolidEdgeAssembly.AssemblyDocument assembly = null;
SolidEdgeAssembly.AsmRefPlanes asmRefPlanes = null;
SolidEdgeAssembly.AsmRefPlane asmRefPlane = null;
SolidEdgeAssembly.AsmRefPlane pPlane = null;
SolidEdgePart.PartDocument part = null;
SolidEdgePart.RefPlanes refPlanes = null;
SolidEdgePart.RefPlane refPlane = null;

try
{
// Connect to a running instance of Solid Edge
application = (SolidEdgeFramework.Application)
Marshal.GetActiveObject ("SolidEdge.Application");

// Access the Documents collection object
documents = application.Documents;

// Add an Assembly document
assembly = (SolidEdgeAssembly.AssemblyDocument)
documents.Add ("SolidEdge.AssemblyDocument", Missing.Value);

// Access the AsmRefPlanes collection object
asmRefPlanes = assembly.AsmRefPlanes;

// Create a reference plane at an angle to a principal
// reference plane
pPlane = asmRefPlanes.Item(2);

// Add a new reference plane.Add a new reference plane
asmRefPlane = asmRefPlanes.AddAngularByAngle (
pPlane,
(2 * Math.PI / 3),
asmRefPlanes.Item(1l),
ReferenceElementConstants.igPivotEnd,
ReferenceElementConstants.igNormalSide,
true) ;

Assemblies Documents

// Add a Part document
part = (SolidEdgePart.PartDocument)
documents.Add ("SolidEdge.PartDocument", Missing.Value);

// BAccess the RefPlanes collection object
refPlanes = part.RefPlanes;

// Create a global reference plane parallel to the top
// reference plane
refPlane = refPlanes.AddParallelByDistance (
refPlanes.Item(1l),
0.1,
ReferenceElementConstants.igNormalSide,
false,
Missing.Value,
Missing.Value,
Missing.Value) ;
}
catch (System.Exception ex)
{
Console.WriteLine (ex.Message) ;
}
finally
{
if (refPlane != null)
{
Marshal.ReleaseComObject (refPlane) ;
refPlane = null;

if (refPlanes != null)

Marshal .ReleaseComObject (refPlanes);
refPlanes = null;

if (part != null)

Marshal.ReleaseComObject (part) ;
part = null;

}

if (pPlane != null)

{
Marshal.ReleaseComObject (pPlane) ;
pPlane = null;

}

if (asmRefPlane != null)

Marshal.ReleaseComObject (asmRefPlane) ;
asmRefPlane = null;

if (asmRefPlanes != null)

Marshal .ReleaseComObject (asmRefPlanes) ;
asmRefPlanes = null;

}
if (assembly != null)

{

Assemblies Documents

Marshal .ReleaseComObject (assembly) ;
assembly = null;

}

if (documents != null)

{
Marshal .ReleaseComObject (documents) ;
documents = null;

if (application != null)

Marshal .ReleaseComObject (application);
application = null;

Occurrences

The Occurrence object represents an instance of a part or subassembly within an assembly. It is an OLE
link to a part or assembly document. An Occurrence object can only be added to an assembly through
an Occurrences collection object.

The automation interface for the assembly environment allows you to place parts and subassemblies
into an assembly. This is handled by the AddByFilename method, which is provided on the Occurrences
collection object. Parts and subassemblies are differentiated by the Subassembly property on each
Occurrence object. The following example shows how to place a part into an assembly.

Parts or subassemblies are initially placed into the assembly at the same location and position they
maintain in their original files. The following illustration shows a block and its position relative to the
three initial global reference planes. The block is positioned so its corner is at the coordinate (0,0,0).
When this part is placed into an assembly using the AddByFilename method, it is placed in the same
location and orientation in the assembly file as it existed in the original part file. Subassemblies follow
the same rules.

Assemblies Documents

7-1 - Occurrence Example

Adding a new Occurrence (Visual Basic .NET)

Imports SolidEdgeConstants
Imports System.Runtime.InteropServices

Module Modulel
Sub Main ()
Dim objApplication As SolidEdgeFramework.Application = Nothing
Dim objDocuments As SolidEdgeFramework.Documents = Nothing
Dim objAssembly As SolidEdgeAssembly.AssemblyDocument = Nothing
Dim objOccurrences As SolidEdgeAssembly.Occurrences = Nothing
Dim objOccurrence As SolidEdgeAssembly.Occurrence = Nothing

Try
' Connect to a running instance of Solid Edge
objApplication = Marshal.GetActiveObject ("SolidEdge.Application™)

' Get a reference to the documents collection
objDocuments = objApplication.Documents

Assemblies Documents

' Create a new assembly document
objAssembly = objDocuments.Add("SolidEdge.AssemblyDocument")

' Get a reference to the occurrences collection
objOccurrences = objAssembly.Occurrences

' Add a part document to the assembly
objOccurrence = objOccurrences.AddByFilename ("C:\Partl.par")
Catch ex As Exception
Console.WritelLine (ex.Message)
Finally
If Not (objOccurrence Is Nothing) Then
Marshal.ReleaseComObject (objOccurrence)
objOccurrence = Nothing
End If
If Not (objOccurrences Is Nothing) Then
Marshal.ReleaseComObject (objOccurrences)
objOccurrences = Nothing
End If
If Not (objAssembly Is Nothing) Then
Marshal.ReleaseComObject (objAssembly)
objAssembly = Nothing
End If
If Not (objDocuments Is Nothing) Then
Marshal.ReleaseComObject (objDocuments)
objDocuments = Nothing
End If
If Not (objApplication Is Nothing) Then
Marshal.ReleaseComObject (objApplication)
objApplication = Nothing
End If
End Try
End Sub
End Module

Adding a new Occurrence (C#)

using System;
using System.Reflection;
using System.Runtime.InteropServices;

namespace MyMacro
{
class Program
{
static void Main(string[] args)
{
SolidEdgeFramework.Application application = null;
SolidEdgeFramework.Documents documents = null;
SolidEdgeAssembly.AssemblyDocument assembly = null;
SolidEdgeAssembly.Occurrences occurrences = null;
SolidEdgeAssembly.Occurrence occurrence = null;

try

{
// Connect to a running instance of Solid Edge
application = (SolidEdgeFramework.Application)

Assemblies Documents

Marshal.GetActiveObject ("SolidEdge.Application");

// Get a reference to the documents collection
documents = application.Documents;

// Create a new assembly document
assembly = (SolidEdgeAssembly.AssemblyDocument)
documents.Add ("SolidEdge.AssemblyDocument", Missing.Value);

// Get a reference to the occurrences collection
occurrences = assembly.Occurrences;

// Add a part document to the assembly
occurrence = occurrences.AddByFilename (
@"C:\Partl.par", Missing.Value) ;
}

catch (System.Exception ex)

{

Console.WritelLine (ex.Message) ;

}
finally

{

if (occurrence != null)

{
Marshal .ReleaseComObject (occurrence) ;
occurrence = null;

if (occurrences != null)

Marshal .ReleaseComObject (occurrences) ;
occurrences = null;

if (assembly != null)

Marshal .ReleaseComObject (assembly) ;
assembly = null;

if (documents != null)

Marshal .ReleaseComObject (documents) ;
documents = null;

if (application != null)

Marshal .ReleaseComObject (application) ;
application = null;

Because occurrences are placed in the same relative location and orientation in which they were initially
created, you will typically change the part or subassembly’s position and orientation after placement.
These methods apply only to grounded occurrences. Occurrences that are placed with relationships to

Assemblies Documents _

other occurrences have their location and orientation defined by their relationships to the other
occurrences.

To show how to use these methods, consider a block with dimensions of 100 mm in the x axis, 100 mm
in the y axis, and 50 mm in the z axis. Assume that you need to place three of these parts to result in the
following assembly:

7-2 - Occurrences Example

Manipulating Occurrences (Visual Basic .NET)

Imports SolidEdgeConstants
Imports System.Runtime.InteropServices

Module Modulel
Sub Main ()
Dim objApplication As SolidEdgeFramework.Application = Nothing
Dim objDocuments As SolidEdgeFramework.Documents = Nothing
Dim objAssembly As SolidEdgeAssembly.AssemblyDocument = Nothing

Assemblies Documents

Dim objOccurrences As SolidEdgeAssembly.Occurrences = Nothing
Dim objOccurrence As SolidEdgeAssembly.Occurrence = Nothing

Dim objOccurrencel As SolidEdgeAssembly.Occurrence Nothing
Dim objOccurrence2 As SolidEdgeAssembly.Occurrence Nothing
Dim objOccurrence3 As SolidEdgeAssembly.Occurrence = Nothing

Try
' Connect to a running instance of Solid Edge
objApplication = Marshal.GetActiveObject ("SolidEdge.Application™")
' Get a reference to the documents collection
objDocuments = objApplication.Documents

' Create a new assembly document

objAssembly = objDocuments.Add("SolidEdge.AssemblyDocument")
' Get a reference to the occurrences collection
objOccurrences = objAssembly.Occurrences

' Add the first block to the assembly
objOccurrencel = objOccurrences.AddByFilename ("C:\Partl.par")

' Add the second block to the assembly

objOccurrence2 = objOccurrences.AddByFilename ("C:\Partl.par")
' It is currently in the same position and orientation as the first
' block, so reposition it

objOccurrence2.Move (0, 0, 0.05)

' Add the third block to the assembly
objOccurrence3 = objOccurrences.AddByFilename ("C:\Partl.par")

' Rotate the third block to a vertical position.
objOccurrencel3.Rotate(0, 0, 0, 0, 1, 0, -Math.PI / 2)

' Reposition the third block.
objOccurrence3.Move (-0.049, 0, 0.049)

Catch ex As Exception
Console.WritelLine (ex.Message)
Finally
If Not (objOccurrence3 Is Nothing) Then
Marshal.ReleaseComObject (objOccurrence3)
objOccurrence3 = Nothing
End If
If Not (objOccurrence2 Is Nothing) Then
Marshal.ReleaseComObject (objOccurrence?)
objOccurrence2 = Nothing
End If
If Not (objOccurrencel Is Nothing) Then
Marshal.ReleaseComObject (objOccurrencel)
objOccurrencel = Nothing
End If
If Not (objOccurrences Is Nothing) Then
Marshal.ReleaseComObject (objOccurrences)
objOccurrences = Nothing
End If

Assemblies Documents

If Not (objAssembly Is Nothing) Then
Marshal.ReleaseComObject (objAssembly)
objAssembly = Nothing

End If

If Not (objDocuments Is Nothing) Then
Marshal.ReleaseComObject (objDocuments)
objDocuments = Nothing

End If

If Not (objApplication Is Nothing) Then
Marshal.ReleaseComObject (objApplication)
objApplication = Nothing

End If

End Try
End Sub
End Module

Manipulating Occurrences (C#)

using System;

using System.Reflection;

using System.Runtime.InteropServices;

namespace MyMacro

{

class Program

{

static void Main(string[] args)
{
SolidEdgeFramework.Application application = null;

SolidEdgeFramework.Documents documents = null;
SolidEdgeAssembly.AssemblyDocument assembly = null;
SolidEdgeAssembly.Occurrences occurrences = null;
SolidEdgeAssembly.Occurrence occurrencel = null;
SolidEdgeAssembly.Occurrence occurrence?2 = null;
SolidEdgeAssembly.Occurrence occurrencel3 = null;

try
{
// Connect to a running instance of Solid Edge
application = (SolidEdgeFramework.Application)
Marshal.GetActiveObject ("SolidEdge.Application");

// Get a reference to the documents collection
documents = application.Documents;

// Create a new assembly document
assembly = (SolidEdgeAssembly.AssemblyDocument)
documents.Add ("SolidEdge.AssemblyDocument", Missing.Value);

// Get a reference to the occurrences collection
occurrences = assembly.Occurrences;

// Add the first block to the assembly
occurrencel = occurrences.AddByFilename (

@"C:\Partl.par", Missing.Value) ;

// Add the second block to the assembly

Assemblies Documents

occurrence?2 = occurrences.AddByFilename (
@"C:\Partl.par", Missing.Value) ;

// It is currently in the same position and orientation as the first
// block, so reposition it
occurrence2.Move (0, 0, 0.05);

// Add the third block to the assembly
occurrence3 = occurrences.AddByFilename (
@"C:\Partl.par", Missing.Value) ;

// Rotate the third block to a vertical position.
occurrence3.Rotate(0, 0, 0, 0, 1, 0, -Math.PI / 2);

// Reposition the third block.
occurrence3.Move (-0.049, 0, 0.049);

}

catch (System.Exception ex)

{

Console.WriteLine (ex.Message) ;

}
finally

{

if (occurrence3 != null)

{
Marshal .ReleaseComObject (occurrence3l) ;
occurrencel3 = null;

if (occurrence2 != null)

Marshal .ReleaseComObject (occurrence?2) ;
occurrence?2 = null;

if (occurrencel != null)

Marshal .ReleaseComObject (occurrencel) ;
occurrencel = null;

if (occurrences != null)

Marshal .ReleaseComObject (occurrences) ;
occurrences = null;

if (assembly != null)

Marshal .ReleaseComObject (assembly) ;
assembly = null;

if (documents != null)

Marshal .ReleaseComObject (documents) ;
documents = null;

}

if (application != null)

{
Marshal .ReleaseComObject (application) ;
application = null;

Assemblies Documents

The following illustration shows the assembly after placing the second block and moving it into place:

7-3 - Occurrences Example

And after placing the third block, rotating it, and moving it into place, the assembly is as follows:

Assemblies Documents

7-4 - Occurrences Example

This example positions the blocks using the Move method. You can also use the SetOrigin method,
which is available on the Occurrence object, to move occurrences. SetOrigin works together with
GetOrigin; GetOrigin returns the coordinates of the occurrence origin with respect to the assembly
origin, and SetOrigin positions the occurrence's origin relative to the assembly's origin.

Assemblies Documents _

References

When you work with an assembly document interactively, you can work directly with occurrences and
part geometry in subassemblies. For example, you can place relationships between occurrences nested
in subassemblies, you can measure distances between faces of occurrences in subassemblies, you can
in-place-activate an occurrence within a sub-assembly, and you can apply face styles to occurrences
within subassemblies.

Because you can use the Occurrences collection to access occurrences nested in subassemblies, and
because you can access the OccurrenceDocument representing a PartDocument and access geometry
within the part, it appears simple to use the automation interface to work with occurrences in
subassemblies just as you would through the graphical user interface. However, this appearance is
deceptive. When you work with occurrences in subassemblies, and when you work with geometry of
parts in occurrences (however deeply nested), use the Reference object to create references to part
geometry and to nested occurrences from the top-level assembly. Then use the Reference object to
place relationships, measure distances, in-placeactivate nested occurrences, apply face styles, and so
forth.

You can create Reference objects with the AssemblyDocument.CreateReference method. This method
has two input parameters: an occurrence (which must be an Occurrence object), and an entity, which
can be one of several different types of objects.

Analyzing Existing Assembly Relationships

When interactively placing parts in an assembly, you define relationships between parts to control their
relative positions. Using the automation interface for the Assembly environment, you can access and
modify properties of the assembly relationships.

Relationship objects are accessible through two collections: Relations3d on the AssemblyDocument
object and Relations3d on each Part object. The Relations3d collection on the AssemblyDocument
allows you to iterate through all relationships in the document. The Relations3d collection on each Part
object allows you to iterate through the relationships defined for that specific part.

There are five types of 3-D relationships: AngularRelation3d, AxialRelation3d, GroundRelation3d,
PlanarRelation3d, and PointRelation3d. These do not directly correlate to the interactive commands
that place relationships. The relationships are as follows:

¢ AngularRelation3d - Defines an angular relationship between two objects.

¢ AxialRelation3d - Defines a relationship between conical faces. This is an axial align in the
interactive interface.

* GroundRelation3d - Defines a ground constraint.

* PointRelation3d - Applies a connect relationship between points (vertices) of the points in an
assembly.

* PlanarRelation3d - Defines a relationship between two planar faces. This includes both mates
and planar aligns.

Assemblies Documents

The following example shows how to use some of these relationship objects. This sample finds all of the
PlanarRelation3d objects that define mates and modifies their offset values.

Analyzing Existing Assembly Relationships (Visual Basic .NET)

Imports System.Runtime.InteropServices

Module Modulel
Sub Main ()

Dim objApplication As SolidEdgeFramework.Application = Nothing
Dim objAssembly As SolidEdgeAssembly.AssemblyDocument = Nothing
Dim objRelations3d As SolidEdgeAssembly.Relations3d = Nothing
Dim objRelation3d As Object = Nothing
Dim objAngularRelation3d As SolidEdgeAssembly.AngularRelation3d = Nothing
Dim objAxialRelation3d As SolidEdgeAssembly.AxialRelation3d = Nothing
Dim objGroundRelation3d As SolidEdgeAssembly.GroundRelation3d = Nothing
Dim objPointRelation3d As SolidEdgeAssembly.PointRelation3d = Nothing
Dim objPlanarRelation3d As SolidEdgeAssembly.PlanarRelation3d = Nothing

Try
' Connect to a running instance of Solid Edge
objApplication = Marshal.GetActiveObject ("SolidEdge.Application™")
' Get a reference to the active document
objAssembly = objApplication.ActiveDocument
' Get a reference to the relations 3d collection
objRelations3d = objAssembly.Relations3d
' Loop through the relations 3d objects
For Each objRelation3d In objRelations3d
' Determine the relation type
Select Case objRelation3d.Type
Case SolidEdgeFramework.ObjectType.igAngularRelation3d
objAngularRelation3d = objRelation3d
Case SolidEdgeFramework.ObjectType.igAxialRelation3d
objAxialRelation3d = objRelation3d
Case SolidEdgeFramework.ObjectType.igGroundRelation3d
objGroundRelation3d = objRelation3d
Case SolidEdgeFramework.ObjectType.igPointRelation3d
objPointRelation3d = objRelation3d
Case SolidEdgeFramework.ObjectType.igPlanarRelation3d
objPlanarRelation3d = objRelation3d
End Select
Next
Catch ex As Exception
Console.WritelLine (ex.Message)
Finally
If Not (objPlanarRelation3d Is Nothing) Then
Marshal.ReleaseComObject (objPlanarRelation3d)
objPlanarRelation3d = Nothing
End If
If Not (objPointRelation3d Is Nothing) Then
Marshal.ReleaseComObject (objPointRelation3d)
objPointRelation3d = Nothing
End If
If Not (objGroundRelation3d Is Nothing) Then

Marshal.ReleaseComObject (objGroundRelation3d)
objGroundRelation3d = Nothing

End If

If Not (objAxialRelation3d Is Nothing) Then
Marshal.ReleaseComObject (objAxialRelation3d)
objAxialRelation3d = Nothing

End If

If Not (objAngularRelation3d Is Nothing) Then
Marshal.ReleaseComObject (objAngularRelation3d)
objAngularRelation3d = Nothing

End If

If Not (objRelation3d Is Nothing) Then
Marshal.ReleaseComObject (objRelation3d)
objRelation3d = Nothing

End If

If Not (objRelations3d Is Nothing) Then
Marshal.ReleaseComObject (objRelations3d)
objRelations3d = Nothing

End If

If Not (objAssembly Is Nothing) Then
Marshal.ReleaseComObject (objAssembly)
objAssembly = Nothing

End If

If Not (objApplication Is Nothing) Then
Marshal.ReleaseComObject (objApplication)
objApplication = Nothing

End If

End Try
End Sub
End Module

Analyzing Existing Assembly Relationships (C#)
using SolidEdgeFramework;

using System;

using System.Reflection;

using System.Runtime.InteropServices;

namespace MyMacro

{

class Program

{

static void Main(string[] args)

{

SolidEdgeFramework.Application application = null;
SolidEdgeAssembly.AssemblyDocument assembly = null;
SolidEdgeAssembly.Relations3d relations3d = null;
object relation3d = null;

SolidEdgeAssembly.AngularRelation3d angularRelation3d
null;

SolidEdgeAssembly.AxialRelation3d axialRelation3d =
SolidEdgeAssembly.GroundRelation3d groundRelation3d
SolidEdgeAssembly.PointRelation3d pointRelation3d =
SolidEdgeAssembly.PlanarRelation3d planarRelation3d

try
{

// Connect to a running instance of Solid Edge

Assemblies Documents

= null;

null;

null;

null;

Assemblies Documents _

application = (SolidEdgeFramework.Application)
Marshal.GetActiveObject ("SolidEdge.Application");

// Get a reference to the active document
assembly = (SolidEdgeAssembly.AssemblyDocument)
application.ActiveDocument;

// Get a reference to the relations 3d collection
relations3d = assembly.Relations3d;

// Loop through the relations 3d objects
for (int 1 = 1; i1 <= relations3d.Count; i++)
{

relation3d = relations3d.Item(i);

Type type = relation3d.GetTypel();

// Get the value of the Type proprety via Reflection
SolidEdgeFramework.ObjectType objectType =
(SolidEdgeFramework.ObjectType) type.InvokeMember (
"Type" ,
BindingFlags.GetProperty,
null,
relation3d,
null);

// Determine the relation type
switch (objectType)
{
case SolidEdgeFramework.ObjectType.igAngularRelation3d:

angularRelation3d = (SolidEdgeAssembly.AngularRelation3d)
relation3d;
break;
case SolidEdgeFramework.ObjectType.igAxialRelation3d:
axialRelation3d = (SolidEdgeAssembly.AxialRelation3d)
relation3d;
break;
case SolidEdgeFramework.ObjectType.igGroundRelation3d:
groundRelation3d = (SolidEdgeAssembly.GroundRelation3d)
relation3d;
break;
case SolidEdgeFramework.ObjectType.igPointRelation3d:
pointRelation3d = (SolidEdgeAssembly.PointRelation3d)
relation3d;
break;
case SolidEdgeFramework.ObjectType.igPlanarRelation3d:
planarRelation3d = (SolidEdgeAssembly.PlanarRelation3d)
relation3d;
break;

}

catch (System.Exception ex)

{

Console.WritelLine (ex.Message) ;

}
finally

{

Assemblies Documents _

if (planarRelation3d != null)

{
Marshal.ReleaseComObject (planarRelation3d) ;
planarRelation3d = null;

}

if (pointRelation3d != null)

Marshal.ReleaseComObject (pointRelation3d) ;
pointRelation3d = null;

if (groundRelation3d != null)

Marshal.ReleaseComObject (groundRelation3d) ;
groundRelation3d = null;

if (axialRelation3d != null)

Marshal.ReleaseComObject (axialRelation3d) ;
axialRelation3d = null;

if (angularRelation3d != null)

Marshal.ReleaseComObject (angularRelation3d) ;
angularRelation3d = null;

if (relation3d !'= null)

Marshal.ReleaseComObject (relation3d) ;
relation3d = null;

if (relations3d != null)

Marshal.ReleaseComObject (relations3d) ;
relations3d = null;

if (assembly != null)

Marshal.ReleaseComObject (assembly) ;
assembly = null;

if (application != null)

Marshal.ReleaseComObject (application) ;
application = null;

Adding New Assembly Relationships
There are five methods to define assembly relationships through the automation interface: AddAngular,
AddAxial, AddGround, AddPlanar, and AddPoint. These do not exactly correspond with the assembly

Assemblies Documents

relationship commands that are available interactively. However, they do correspond to the
relationships that the interactive commands create.

For example, the AddPlanar method can be used to create either a Mate or an Align. The inputs to the
AddPlanar method are two reference objects which are described below (but they correspond to the
faces being mated or aligned), a Boolean that specifies whether or not the normals to the faces are
aligned (this determines whether the faces are mated or aligned), and constraining points on each face
(that correspond to the locations where you would click to locate the faces when you work
interactively).

The following sample demonstrates the AddAxial method. This produces the same relationship that the
interactive Align command produces when you align cylindrical faces. The inputs to this method are
similar to those for the AddPlanar method. The first two inputs are reference objects that represent the
cylindrical faces being aligned, and the third input is the Boolean that specifies whether normals to
these faces are aligned. This method does not have input parameters for the constraining points the
AddPlanar method uses.

To programmatically create the relationships that the Insert interactive command creates, you would
use the AddPlanar and AddAxial methods. This would define the two cylindrical faces whose axes are
aligned, and it would define the two planar faces that are mated. To remove the final degree of
freedom, you would edit the axial relationship and set its FixedRotate property to True.

To create a Connect relationship, use the AddPoint method. The first input parameter is a reference
object corresponding to the face or edge on the first part; the second input parameter is a constant that
defines which key point from the input geometry defines the connection point (for example,
CenterPoint, EndPoint, MidPoint, and so forth); and the third and fourth input parameters describe the
same characteristics of the second part.

Within this general description, there are some important refinements. The methods previously
described refer to reference objects, which correspond to part geometry. Each Assembly relationship
must store a means of retrieving the geometric Part information that defines it. When using the
AddPlanar method, for example, you need to pass in references to two planar faces (or reference
planes).

The AssemblyDocument object has a CreateReference method whose job is to create the reference
objects. The CreateReference method takes as input an Occurrence (an object that represents a
member document of the assembly—which in this case would be a part document) and an Entity. The
Entity can be an Edge, Face, or RefPlane object from the Occurrence document. The Reference object
stores a path to the geometric representations necessary to construct the relationships.

To create assembly relationships via the automation interface, Occurrence objects (the Part and
Subassembly models that comprise the assembly) must be placed in the Assembly document. You do
this with the AssemblyDocument.Occurrances.AddByFilename method. This places the Occurrence in
the assembly with a ground relationship. Therefore, (except for the first Occurrence added to the

Assemblies Documents

assembly) before any other relationships can be applied between this Occurrence and others in the
assembly, the ground relationship must be deleted.

Adding New Assembly Relationships (Visual Basic .NET)

Imports SolidEdgeGeometry
Imports System.Runtime.InteropServices

Module Modulel
Sub Main ()
Dim objApplication As SolidEdgeFramework.Application = Nothing
Dim objDocuments As SolidEdgeFramework.Documents = Nothing
Dim objAssembly As SolidEdgeAssembly.AssemblyDocument = Nothing
Dim objOccurrences As SolidEdgeAssembly.Occurrences = Nothing
Dim objOccurrencel As SolidEdgeAssembly.Occurrence = Nothing
Dim objOccurrence2 As SolidEdgeAssembly.Occurrence = Nothing
Dim objPart As SolidEdgePart.PartDocument = Nothing
Dim objModels As SolidEdgePart.Models = Nothing
Dim objModel As SolidEdgePart.Model = Nothing
Dim objRevolvedProtrusions As SolidEdgePart.RevolvedProtrusions = Nothing
Dim objRevolvedProtrusion As SolidEdgePart.RevolvedProtrusion = Nothing
Dim objRevolvedCutouts As SolidEdgePart.RevolvedCutouts = Nothing
Dim objRevolvedCutout As SolidEdgePart.RevolvedCutout = Nothing
Dim objFaces As SolidEdgeGeometry.Faces = Nothing
Dim objFace As SolidEdgeGeometry.Face = Nothing
Dim objGeometry As Object = Nothing
Dim objScrewConicalFace As SolidEdgeGeometry.Face = Nothing
Dim objNutConicalFace As SolidEdgeGeometry.Face = Nothing
Dim objRefToCylinderInScrew As SolidEdgeFramework.Reference = Nothing
Dim objRefToConeInNut As SolidEdgeFramework.Reference = Nothing
Dim objRelations3d As SolidEdgeAssembly.Relations3d = Nothing
Dim objGroundRel As SolidEdgeAssembly.GroundRelation3d = Nothing
Dim objRelNuttoScrew As SolidEdgeAssembly.AxialRelation3d = Nothing

Try
' Connect to a running instance of Solid Edge

objApplication = Marshal.GetActiveObject ("SolidEdge.Application™")

' Get a reference to the documents collection

objDocuments = objApplication.Documents

' Create a new assembly document

objAssembly = objDocuments.Add("SolidEdge.AssemblyDocument")

' Get a reference to the occurrences collection

objOccurrences = objAssembly.Occurrences

' Add the first occurrence

objOccurrencel = objOccurrences.AddByFilename ("C:\Screw.par")

' Get a reference to the occurrence document

objPart = objOccurrencel.OccurrenceDocument

' Get a reference to the models collection

objModels = objPart.Models

' Get a reference to the one and only model

Assemblies Documents

objModel = objModels.Item(1)
' Get a reference to the revolved protrusions collection
objRevolvedProtrusions = objModel.RevolvedProtrusions
' Get a reference to the first revolved protrusion
objRevolvedProtrusion = objRevolvedProtrusions.Item(1l)

' Get a reference to the side faces collection
objFaces = objRevolvedProtrusion.SideFaces
' Loop through the faces
For Each objFace In objFaces
' Get a reference to the geometry object
objGeometry = objFace.Geometry
If objGeometry.Type = GNTTypePropertyConstants.igCylinder Then
objScrewConicalFace = objFace
Exit For
End If
Next
' Create the first reference
objRefToCylinderInScrew = objAssembly.CreateReference(_
objOccurrencel, objScrewConicalFace)
' Add the second occurrence
objOccurrence2 = objOccurrences.AddByFilename ("C:\Nut.par")

' Get a reference to the occurrence document
objPart = objOccurrence2.OccurrenceDocument
' Get a reference to the models collection
objModels = objPart.Models
' Get a reference to the one and only model
objModel = objModels.Item(1)

' Get a reference to the revolved cutouts collection
objRevolvedCutouts = objModel.RevolvedCutouts

' Get a reference to the first revolved cutout
objRevolvedCutout = objRevolvedCutouts.Item(1l)

' Get a reference to the side faces collection
objFaces = objRevolvedCutout.SideFaces
' Loop through the faces
For Each objFace In objFaces
objGeometry = objFace.Geometry
If objGeometry.Type = GNTTypePropertyConstants.igCone Then
objNutConicalFace = objFace
Exit For
End If
Next
' Create the second reference
objRefToConeInNut = objAssembly.CreateReference(_

Assemblies Documents _

objOccurrence?2, objNutConicalFace)

' All Occurrences placed through automation are placed "Grounded."
' You must delete the ground constraint on the second Occurrence

' before you can place other relationships.

objRelations3d = objAssembly.Relations3d

objGroundRel = objRelations3d.Item(2)

objGroundRel.Delete ()

' Rather than passing literal axes to the AddAxial method, pass

' references to conical faces, Just as you select conical faces

' when you use the interactive Align command.

objRelNuttoScrew = objRelations3d.AddAxial (_
objRefToConeInNut, objRefToCylinderInScrew, False)

Catch ex As Exception
Console.WritelLine (ex.Message)
Finally

If Not (objRelNuttoScrew Is Nothing) Then
Marshal.ReleaseComObject (objRelNuttoScrew)
objRelNuttoScrew = Nothing

End If

If Not (objGroundRel Is Nothing) Then
Marshal.ReleaseComObject (objGroundRel)
objGroundRel = Nothing

End If

If Not (objRelations3d Is Nothing) Then
Marshal.ReleaseComObject (objRelations3d)
objRelations3d = Nothing

End If

If Not (objRefToConeInNut Is Nothing) Then
Marshal.ReleaseComObject (objRefToConeInNut)
objRefToConeInNut = Nothing

End If

If Not (objRefToCylinderInScrew Is Nothing) Then
Marshal.ReleaseComObject (objRefToCylinderInScrew)
objRefToCylinderInScrew = Nothing

End If

If Not (objNutConicalFace Is Nothing) Then
Marshal.ReleaseComObject (objNutConicalFace)
objNutConicalFace = Nothing

End If

If Not (objScrewConicalFace Is Nothing) Then
Marshal.ReleaseComObject (objScrewConicalFace)
objScrewConicalFace = Nothing

End If

If Not (objGeometry Is Nothing) Then
Marshal .ReleaseComObject (objGeometry)
objGeometry = Nothing

End If

If Not (objFace Is Nothing) Then
Marshal.ReleaseComObject (objFace)
objFace = Nothing

End If

If Not (objFaces Is Nothing) Then
Marshal.ReleaseComObject (objFaces)
objFaces = Nothing

End If

Assemblies Documents

If Not (objRevolvedCutout Is Nothing) Then
Marshal.ReleaseComObject (objRevolvedCutout)
objRevolvedCutout = Nothing

End If

If Not (objRevolvedCutouts Is Nothing) Then
Marshal.ReleaseComObject (objRevolvedCutouts)
objRevolvedCutouts = Nothing

End If

If Not (objRevolvedProtrusion Is Nothing) Then
Marshal.ReleaseComObject (objRevolvedProtrusion)
objRevolvedProtrusion = Nothing

End If

If Not (objRevolvedProtrusions Is Nothing) Then
Marshal.ReleaseComObject (objRevolvedProtrusions)
objRevolvedProtrusions = Nothing

End If

If Not (objModel Is Nothing) Then
Marshal.ReleaseComObject (objModel)
objModel = Nothing

End If

If Not (objModels Is Nothing) Then
Marshal .ReleaseComObject (objModels)
objModels = Nothing

End If

If Not (objPart Is Nothing) Then
Marshal.ReleaseComObject (objPart)
objPart = Nothing

End If

If Not (objOccurrence2 Is Nothing) Then
Marshal .ReleaseComObject (objOccurrence?2)
objOccurrence?2 = Nothing

End If

If Not (objOccurrencel Is Nothing) Then
Marshal.ReleaseComObject (objOccurrencel)
objOccurrencel = Nothing

End If

If Not (objOccurrences Is Nothing) Then
Marshal.ReleaseComObject (objOccurrences)
objOccurrences = Nothing

End If

If Not (objAssembly Is Nothing) Then
Marshal.ReleaseComObject (objAssembly)
objAssembly = Nothing

End If

If Not (objDocuments Is Nothing) Then
Marshal.ReleaseComObject (objDocuments)
objDocuments = Nothing

End If

If Not (objApplication Is Nothing) Then
Marshal.ReleaseComObject (objApplication)
objApplication = Nothing

End If

End Try
End Sub
End Module

Adding New Assembly Relationships (C#)

using SolidEdgeFramework;

using SolidEdgeGeometry;

using System;

using System.Reflection;

using System.Runtime.InteropServices;

namespace MyMacro

{

class Program

{

static void Main(string[] args)

{

SolidEdgeFramework.Application application = null;

SolidEdgeFramework.Documents documents = null;

SolidEdgeAssembly.AssemblyDocument assembly = null;

SolidEdgeAssembly.Occurrences occurrences = null;
SolidEdgeAssembly.Occurrence occurrencel = null;
SolidEdgeAssembly.Occurrence occurrence2 = null;

SolidEdgePart.PartDocument part = null;
SolidEdgePart.Models models = null;
SolidEdgePart.Model model = null;

SolidEdgePart.RevolvedProtrusions revolvedProtrusions
SolidEdgePart.RevolvedProtrusion revolvedProtrusion

SolidEdgePart.RevolvedCutouts revolvedCutouts =

SolidEdgePart.RevolvedCutout revolvedCutout = null;

SolidEdgeGeometry.Faces faces = null;
SolidEdgeGeometry.Face face = null;

object geometry = null;

SolidEdgeGeometry.Face screwConicalFace = null;
SolidEdgeGeometry.Face nutConicalFace = null;

SolidEdgeFramework.Reference refToCylinderInScrew
SolidEdgeFramework.Reference refToConeInNut = null;
SolidEdgeAssembly.Relations3d relations3d = null;

Assemblies Documents _

= null;
null;

null;

SolidEdgeAssembly.GroundRelation3d groundRelation3d = null;

SolidEdgeAssembly.AxialRelation3d relNuttoScrew

try

{
// Connect to a running instance of Solid Edge
application = (SolidEdgeFramework.Application)

Marshal.GetActiveObject ("SolidEdge.Application");

// Get a reference to the documents collection
documents = application.Documents;

// Get a reference to the active document

assembly = (SolidEdgeAssembly.AssemblyDocument)
Missing.Value) ;

documents.Add ("SolidEdge.AssemblyDocument",

// Get a reference to the occurrences collection

occurrences = assembly.Occurrences;

// Add the first occurrence

null;

occurrencel = occurrences.AddByFilename (@"C:\Screw.par",

Missing.Value) ;

Assemblies Documents

// Get a reference to the occurrence document
part = (SolidEdgePart.PartDocument)occurrencel.OccurrenceDocument;

// Get a reference to the models collection
models part.Models;

// Get a reference to the one and only model
model = models.Item(1l);

// Get a reference to the revolved protrusions collection
revolvedProtrusions = model.RevolvedProtrusions;

// Get a reference to the first revolved protrusion
revolvedProtrusion = revolvedProtrusions.Item(1);

// Get a reference to the side faces collection
faces = (SolidEdgeGeometry.Faces)revolvedProtrusion.SideFaces;

// Loop through the faces
for (int 1 = 1; i <= faces.Count; i++)
{
// Get a reference to the face object
face = (SolidEdgeGeometry.Face)faces.Item(1i);

// Get a reference to the geometry object
geometry = face.Geometry;

// Determine the face type

GNTTypePropertyConstants typeProperty = (GNTTypePropertyConstants)
geometry.GetType () . InvokeMember (
"Type" ,
BindingFlags.GetProperty,
null,
geometry,
null);
if (typeProperty == GNTTypePropertyConstants.igCylinder)
{
screwConicalFace = face;
break;

}

// Create the first reference
refToCylinderInScrew = (SolidEdgeFramework.Reference)
assembly.CreateReference (occurrencel, screwConicalFace);

// Add the second occurrence
occurrence2 = occurrences.AddByFilename (
@"C:\Nut.par", Missing.Value);

// Get a reference to the occurrence document
part = (SolidEdgePart.PartDocument)occurrence2.OccurrenceDocument;

// Get a reference to the models collection
models = part.Models;

Assemblies Documents _

// Get a reference to the one and only model
model = models.Item(1l);

// Get a reference to the revolved cutouts collection
revolvedCutouts = model.RevolvedCutouts;

// Get a reference to the first revolved cutout
revolvedCutout = revolvedCutouts.Item(1l);

// Get a reference to the side faces collection
faces = (SolidEdgeGeometry.Faces)revolvedCutout.SideFaces;

// Loop through the faces
for (int 1 = 1; i <= faces.Count; i++)
{
// Get a reference to the face object
face = (SolidEdgeGeometry.Face)faces.Item(1i);

// Get a reference to the geometry object
geometry = face.Geometry;

// Determine the face type

GNTTypePropertyConstants typeProperty = (GNTITypePropertyConstants)
geometry.GetType () . InvokeMember (
"Type" ,
BindingFlags.GetProperty,
null,
geometry,
null);
if (typeProperty == GNTTypePropertyConstants.igCone)
{
nutConicalFace = face;
break;

}

// Create the second reference
refToConeInNut = (SolidEdgeFramework.Reference)
assembly.CreateReference (occurrence2, nutConicalFace);

// All Occurrences placed through automation are placed "Grounded."

// You must delete the ground constraint on the second Occurrence

// before you can place other relationships.

relations3d = assembly.Relations3d;

groundRelation3d = (SolidEdgeAssembly.GroundRelation3d)
relations3d.Item(2);

groundRelation3d.Delete () ;

// Rather than passing literal axes to the AddAxial method, pass
// references to conical faces, Just as you select conical faces
// when you use the interactive Align command.
relNuttoScrew = relations3d.AddAxial (

refToConeInNut,

refToCylinderInScrew,

false);

}

catch

{

}

(System.Exception ex)

Console.WritelLine (ex.Message) ;

finally

{

if (relNuttoScrew != null)

{
Marshal.ReleaseComObject (relNuttoScrew) ;
relNuttoScrew = null;

if (groundRelation3d != null)
Marshal .ReleaseComObject (groundRelation3d) ;
groundRelation3d = null;

if (relations3d != null)

Marshal .ReleaseComObject (relations3d) ;
relations3d = null;

if (refToConeInNut != null)

Marshal .ReleaseComObject (refToConeInNut) ;
refToConeInNut = null;
if (refToCylinderInScrew != null)

Marshal .ReleaseComObject (refToCylinderInScrew) ;
refToCylinderInScrew = null;
if (nutConicalFace != null)

Marshal .ReleaseComObject (nutConicalFace) ;
nutConicalFace = null;
if (screwConicalFace != null)

Marshal .ReleaseComObject (screwConicalFace) ;
screwConicalFace = null;
if (geometry != null)

Marshal .ReleaseComObject (geometry) ;
geometry = null;
if (face != null)

Marshal .ReleaseComObject (face) ;
face = null;
if (faces != null)

Marshal .ReleaseComObject (faces) ;
faces = null;

Assemblies Documents _

if (revolvedCutout != null)

{
Marshal.ReleaseComObject (revolvedCutout) ;
revolvedCutout = null;

if (revolvedCutouts != null)

Marshal.ReleaseComObject (revolvedCutouts) ;
revolvedCutouts = null;

if (revolvedProtrusion != null)

Marshal.ReleaseComObject (revolvedProtrusion) ;
revolvedProtrusion = null;

if (revolvedProtrusions != null)

Marshal.ReleaseComObject (revolvedProtrusions) ;
revolvedProtrusions = null;

}
if (model != null)

{
Marshal.ReleaseComObject (model) ;
model = null;

}
if (models !'= null)

{
Marshal.ReleaseComObject (models) ;
models = null;

if (part != null)

Marshal.ReleaseComObject (part) ;
part = null;

if (occurrence2 != null)

Marshal.ReleaseComObject (occurrence?2) ;
occurrence2 = null;

if (occurrencel != null)

Marshal.ReleaseComObject (occurrencel) ;
occurrencel = null;

if (occurrences != null)

Marshal.ReleaseComObject (occurrences) ;
occurrences = null;

if (assembly != null)

Marshal.ReleaseComObject (assembly) ;
assembly = null;

}

if (documents != null)

{

Assemblies Documents

100

Assemblies Documents [kl

Marshal .ReleaseComObject (documents) ;
documents = null;

}

if (application != null)

{
Marshal .ReleaseComObject (application) ;
application = null;

Draft Documents iy

Chapter 8 - Draft Documents

This chapter describes the automation interface of the Solid Edge Draft environment.

Sections and Sheets

The structure of Draft documents differs significantly from other Solid Edge document types. From the
DraftDocument object, you access the Sheets collection and then the individual Sheet objects. The

Sheets collection contains both working sheets and background sheets.

In addition, DraftDocument supports a Sections object. The Sections object is a collection of Section
objects that group Sheets by the characteristics of the data they contain. As users create drawings
interactively, data from these drawings is automatically placed in one of three Section objects:

¢ Working Section - Contains Sheet objects (Working Sheets) on which normal 2-D drawing
objects (Lines, Arcs, DrawingViews, and so forth) are placed.

® Background Section - Contains background sheets, which hold the sheet borders.

® 2D Model Section - Contains the Sheet objects on which the 2-D geometry of
DrawingView/DraftView objects is placed. For each DrawingView/DraftView object, there is a
separate sheet in the DrawingViews section.

Sections are a part of the graphical interface, although they are not immediately apparent. When the
interactive user selects View > Background Sheet, Solid Edge internally changes to the Backgrounds
section and displays its sheets. Similarly, the View > Working Sheet command allows you to modify the
sheets that are in the Sections1 section. When a DrawingView is added, a new sheet is added to the
DrawingViews section.

However, it is not possible through the graphical interface to create and manipulate sections directly.
Although it is possible through automation to create new Sections, it is not a supported workflow.
Although the same information is available on the Sheets collection that is a child of the DraftDocument
object, within Sections, the information is separated by its functional characteristics.

Sections and Sheets Example (Visual Basic .NET)

Imports SolidEdgeDraft
Imports System.Runtime.InteropServices

Module Modulel
Sub Main ()
Dim objApplication As SolidEdgeFramework.Application = Nothing
Dim objDocuments As SolidEdgeFramework.Documents = Nothing
Dim objDraft As SolidEdgeDraft.DraftDocument = Nothing
Dim objSections As SolidEdgeDraft.Sections = Nothing
Dim objSection As SolidEdgeDraft.Section = Nothing
Dim objSectionSheets As SolidEdgeDraft.SectionSheets = Nothing

Draft Documents [0k

Dim objSheets As SolidEdgeDraft.Sheets = Nothing
Dim objSheet As SolidEdgeDraft.Sheet = Nothing

Dim strFormatl As String = "Section {Or"
Dim strFormat2 As String = "Sheet = {0}"
Try

' Connect to a running instance of Solid Edge

objApplication = Marshal.GetActiveObject ("SolidEdge.Application™")
' Get a reference to the documents collection
objDocuments = objApplication.Documents

' Add a Draft document
objDraft = objDocuments.Add("SolidEdge.DraftDocument")
' Get a reference to the sections collection
objSections = objDraft.Sections
' Loop through the sections
igWorkingSection, igBackgroundSection & ig2dModelSection
For Each objSection In objSections

' Output the section type

Console.WriteLine(_

String.Format (strFormatl, objSection.Type.ToString()))

' Get a reference to the section sheets collection

objSectionSheets = objSection.Sheets
' Loop through the sheets
For Each objSheet In objSectionSheets
' Output the sheet name
Console.WritelLine (String.Format (strFormat2, objSheet.Name))
Next
Next
' Access the igWorkingSection directly
objSection = objSections.WorkingSection
' Access the igBackgroundSection directly
objSection = objSections.BackgroundSection
' Get a reference to the sheets collection
objSheets = objDraft.Sheets

' Add a new sheet
objSheet = objSheets.AddSheet (_

"Sheet2", SheetSectionTypeConstants.igWorkingSection)
' Make the newly added sheet active
objSheet.Activate ()

Catch ex As Exception
Console.WritelLine (ex.Message)
Finally
If Not (objSheet Is Nothing) Then
Marshal.ReleaseComObject (objSheet)
objSheet = Nothing

End If

If Not (objSheets Is Nothing) Then
Marshal.ReleaseComObject (objSheets)
objSheets = Nothing

End If

If Not (objSectionSheets Is Nothing) Then
Marshal.ReleaseComObject (objSectionSheets)
objSectionSheets = Nothing

End If

If Not (objSection Is Nothing) Then
Marshal.ReleaseComObject (objSection)
objSection = Nothing

End If

If Not (objSections Is Nothing) Then
Marshal.ReleaseComObject (objSections)
objSections = Nothing

End If

If Not (objDraft Is Nothing) Then
Marshal.ReleaseComObject (objDraft)
objDraft = Nothing

End If

If Not (objDocuments Is Nothing) Then
Marshal.ReleaseComObject (objDocuments)
objDocuments = Nothing

End If

If Not (objApplication Is Nothing) Then
Marshal.ReleaseComObject (objApplication)
objApplication = Nothing

End If

End Try
End Sub
End Module

Sections and Sheets Example (C#)

using SolidEdgeDraft;

using System;

using System.Reflection;

using System.Runtime.InteropServices;

namespace MyMacro

{

class Program

{

static void Main(string[] args)

{

SolidEdgeFramework.Application application = null;
SolidEdgeFramework.Documents documents = null;
SolidEdgeDraft.DraftDocument draft = null;
SolidEdgeDraft.Sections sections = null;
SolidEdgeDraft.Section section = null;
SolidEdgeDraft.SectionSheets sectionSheets = null;

SolidEdgeDraft.Sheets sheets = null;
SolidEdgeDraft.Sheet sheet = null;
string formatl = "Section = {0}";
string format2 = "Sheet = {0}";

Draft Documents

104

Draft Documents KL

try
{
// Connect to a running instance of Solid Edge
application = (SolidEdgeFramework.Application)
Marshal.GetActiveObject ("SolidEdge.Application");

// Get a reference to the documents collection
documents = application.Documents;

// Add a Draft document
draft = (SolidEdgeDraft.DraftDocument)
documents.Add ("SolidEdge.DraftDocument", Missing.Value) ;

// Get a reference to the sections collection
sections = draft.Sections;

// Loop through the sections

// igWorkingSection, igBackgroundSection & ig2dModelSection
for (int 1 = 1; i <= sections.Count; i++)

{

section = sections.Item(i);

// Get a reference to the section sheets collection
sectionSheets = section.Sheets;

// Output the section type
Console.WritelLine(String.Format (formatl, section.Type.ToString()));

// Loop through the sheets
for (int j = 1; j <= sectionSheets.Count; j++)
{

sheet = sectionSheets.Item(j);

// Output the sheet name
Console.WriteLine (String.Format (format2, sheet.Name));

}

// Access the igWorkingSection directly
section = sections.WorkingSection;

// Access the igBackgroundSection directly
section = sections.BackgroundSection;

// Get a reference to the sheets collection
sheets = draft.Sheets;

// Add a new sheet

sheet = sheets.AddSheet (
"Sheet2",
SheetSectionTypeConstants.igWorkingSection,
Missing.Value,
Missing.Value) ;

// Make the newly added sheet active
sheet.Activate () ;

}

catch (System.Exception ex)

{

}

Console.WritelLine (ex.Message) ;

finally

{

if (sheet != null)

{
Marshal .ReleaseComObject (sheet) ;
sheet = null;

if (sheets != null)

Marshal .ReleaseComObject (sheets) ;
sheets = null;

if (sectionSheets != null)

Marshal .ReleaseComObject (sectionSheets) ;
sectionSheets = null;

if (section != null)

Marshal .ReleaseComObject (section) ;
section = null;

if (sections != null)

Marshal .ReleaseComObject (sections) ;
sections = null;

if (draft != null)

Marshal .ReleaseComObject (draft) ;
draft = null;

if (documents != null)

Marshal .ReleaseComObject (documents) ;
documents = null;

if (application != null)

Marshal .ReleaseComObject (application) ;
application = null;

Draft Documents

106

Draft Documents iy

SmartFrames

SmartFrames are shapes (rectangles or ellipses) on a sheet that enclose embedded or linked object(s)
and have some intelligence about how to deal with the data in that frame. SmartFrames provide control
over the way automation objects are displayed and manipulated on a Solid Edge sheet. SmartFrames
have intelligence about their contained objects that includes the following features:

* Atransformation matrix to convert between the framed object’s local coordinate system and
the containing document’s coordinate system.

¢ Methods to manipulate the contained object, such as scale, crop, move, or rotate.

* Frame symbology that shows the state of the framed object such as linked, embedded, or a link
that needs updating.

® Link update rules (such as automatic and manual).

® |n-place activation rules.

e Knowledge about favorite commands.

¢ Knowledge about a preferred file location or extension used in first associating the file to a
frame.

e Knowledge for converting between links, embeddings, and native data.

When using Solid Edge, you may sometimes find it useful to reference data that exists in a format other
than a Solid Edge file. For example, while in the Solid Edge drawing environment, you might want to link
to a portion of a Microsoft Excel spreadsheet. Solid Edge supports this cross-referencing through the
implementation of SmartFrames. A SmartFrame is a Solid Edge object that contains a view of an
embedded or linked object.

Initially, you can create an empty SmartFrame without specifying an object to be linked or embedded. A
SmartFrame style must be specified, or you can use the default style for a sheet. A SmartFrame style
has properties that affect how the object within the SmartFrame can be manipulated. For example, a
SmartFrame that is based on a reference file style can either align the origin of the external file with the
Solid Edge file or provide an option to scale the contents.

When you create a SmartFrame, four solid black lines are drawn to represent the frame. Once you have
created the SmartFrame, you can select and manipulate the object as you would other Solid Edge objects.

You can create and manipulate SmartFrame objects through the automation interface using the
methods that are associated with the SmartFrames2d collection object. In the following example, the
AddBy2Points method creates a SmartFrame. The first argument of AddBy2Points specifies a style to be

applied to the SmartFrame. In this case, the style is set to a blank string (""), so the default style is

applied.

Linking and Embedding Example (Visual Basic .NET)

Imports SolidEdgeDraft
Imports System.Runtime.InteropServices

Module Modulel

Draft Documents

Sub Main ()
Dim objApplication As SolidEdgeFramework.Application = Nothing
Dim objDocuments As SolidEdgeFramework.Documents = Nothing
Dim objDraft As SolidEdgeDraft.DraftDocument = Nothing
Dim objSheet As SolidEdgeDraft.Sheet = Nothing
Dim objSmartFrames2d As SolidEdgeFrameworkSupport.SmartFrames2d = Nothing
Dim objSmartFrame2d As SolidEdgeFrameworkSupport.SmartFrame2d = Nothing

Try
' Connect to a running instance of Solid Edge

objApplication = Marshal.GetActiveObject ("SolidEdge.Application™)

|l

Get a reference to the documents collection
objDocuments = objApplication.Documents

' Add a Draft document
objDraft = objDocuments.Add ("SolidEdge.DraftDocument")

' Get a reference to the active sheet

objSheet = objDraft.ActiveSheet

' Get a reference to the smart frames 2d collection

objSmartFrames2d = objSheet.SmartFrames2d

' Create a SmartFrame2d object by two points.

objSmartFrame2d = objSmartFrames2d.AddBy2Points (_
"v, 0.05, 0.05, 0.1, 0.1)

' Add a description to the SmartFrame
objSmartFrame2d.Description = "My SmartFrame2d"
' Embed document within the SmartFrame
objSmartFrame2d.CreateEmbed ("C:\MyFile.doc")

' or

' Link document within the SmartFrame
'objSmartFrame2d.CreatelLink ("C:\MyFile.doc")
Catch ex As Exception
Console.WritelLine (ex.Message)
Finally
If Not (objSmartFrame2d Is Nothing) Then
Marshal.ReleaseComObject (objSmartFrame2d)
objSmartFrame2d = Nothing
End If
If Not (objSmartFrames2d Is Nothing) Then
Marshal.ReleaseComObject (objSmartFrames2d)
objSmartFrames2d = Nothing
End If
If Not (objSheet Is Nothing) Then
Marshal.ReleaseComObject (objSheet)
objSheet = Nothing
End If
If Not (objbDraft Is Nothing) Then
Marshal.ReleaseComObject (objDraft)
objDraft = Nothing
End If

108

Draft Documents [EeL)

If Not (objDocuments Is Nothing) Then
Marshal.ReleaseComObject (objDocuments)
objDocuments = Nothing

End If

If Not (objApplication Is Nothing) Then
Marshal.ReleaseComObject (objApplication)
objApplication = Nothing

End If

End Try
End Sub
End Module

Linking and Embedding Example (C#)

using SolidEdgeDraft;

using System;

using System.Reflection;

using System.Runtime.InteropServices;

namespace MyMacro

{

class Program

{

static void Main(string[] args)

{

SolidEdgeFramework.Application application = null;
SolidEdgeFramework.Documents documents = null;
SolidEdgeDraft.DraftDocument draft = null;
SolidEdgeDraft.Sheet sheet = null;
SolidEdgeFrameworkSupport.SmartFrames2d smartFrames2d = null;
SolidEdgeFrameworkSupport.SmartFrame2d smartFrame2d = null;

try
{
// Connect to a running instance of Solid Edge
application = (SolidEdgeFramework.Application)
Marshal.GetActiveObject ("SolidEdge.Application");

// Get a reference to the documents collection
documents = application.Documents;

// Add a Draft document
draft = (SolidEdgeDraft.DraftDocument)
documents.Add ("SolidEdge.DraftDocument", Missing.Value);

// Get a reference to the active sheet
sheet = draft.ActiveSheet;

// Get a reference to the smart frames 2d collection
smartFrames2d = (SolidEdgeFrameworkSupport.SmartFrames2d)
sheet.SmartFrames2d;

// Create a SmartFrame2d object by two points.
smartFrame2d = smartFrames2d.AddBy2Points (

0.02,

Draft Documents [kl

0.02,
0.07,
0.07);

// Add a description to the SmartFrame
smartFrame2d.Description = "My SmartFrame2d";

// Embed document within the SmartFrame
smartFrame2d.CreateEmbed (@"C:\MyFile.doc", Missing.Value);

// or

// Link document within the SmartFrame
smartFrame2d.CreateLink (@"C:\MyFile.doc", Missing.Value);
}

catch (System.Exception ex)

{

Console.WritelLine (ex.Message) ;

}
finally

{

if (smartFrame2d != null)

{
Marshal.ReleaseComObject (smartFrame2d) ;
smartFrame2d = null;

if (smartFrames2d != null)

Marshal.ReleaseComObject (smartFrames2d) ;
smartFrames2d = null;

if (sheet != null)

Marshal.ReleaseComObject (sheet) ;
sheet = null;

if (draft != null)

Marshal.ReleaseComObject (draft) ;
draft = null;

if (documents != null)

Marshal.ReleaseComObject (documents) ;
documents = null;

if (application != null)

Marshal.ReleaseComObject (application) ;
application = null;

Draft Documents [HlkS

Symbols

Symbols are documents that contain graphic elements. You can place these documents at a specified
scale, position, and orientation. The document that contains the graphic elements is the source
document; the document into which the source is placed is the container document. A source
document is represented in a container document by a symbol. The symbol references the source
document as the COM object. Using symbols, you can store a drawing of a nut, bolt, or screw in one
document and place it in several documents at a user-defined size. In addition, symbols have the
following benefits:

* Save memory when placing multiple instances of the same source document in the same
container.

e Automatically update the container document when modified.

® Maintain the properties defined in the source document.

On the Insert menu, click Object to place a symbol in the interactive environment. When using Solid
Edge though automation, you can place a symbol using the methods associated with the Symbols
collection.

The Symbols collection object provides methods that enable you to place new symbols and to query for
information about existing ones. The Symbol2d object provides methods and properties to enable you
to review or manipulate the symbol geometry, the attachment between the symbol and the source
document, and the user properties. You can also move and copy symbols.

You can place a symbol from any source document that is implemented as an ActiveX object. For
example, a source document could be a Microsoft Word file, an Excel spreadsheet, or a Solid Edge
document.

When you place a symbol, you must specify an insertion type. The insertion type affects the way the
symbol is updated. Three options are available:

¢ Linked - The symbol and the initial source document are directly connected. The symbol is
automatically updated when its source document is edited. The source document is external to
the container. It is a separate file that is visible with Explorer.

® Embedded - A copy of the initial source document is stored in the container. The symbol is
attached to this copy and is automatically updated when the copy is updated. After placement,
the symbol is strictly independent of the initial source document.

¢ Shared Embedded - When placing a symbol more than one time into the same container, the
initial source document is copied only one time. The symbols are attached to that copy and are
all updated automatically when the copy of the initial source document is updated. After
placement, the symbols are strictly independent of the initial source document.

Symbols Example (Visual Basic .NET)

Imports SolidEdgeFramework
Imports System.Runtime.InteropServices

Draft Documents [k

Module Modulel
Sub Main ()
Dim objApplication As SolidEdgeFramework.Application = Nothing
Dim objDocuments As SolidEdgeFramework.Documents = Nothing
Dim objDraft As SolidEdgeDraft.DraftDocument = Nothing
Dim objSheet As SolidEdgeDraft.Sheet = Nothing
Dim objSymbols As SolidEdgeFramework.Symbols = Nothing

Dim objSymboll As SolidEdgeFramework.Symbol2d = Nothing
Dim objSymbol2 As SolidEdgeFramework.Symbol2d = Nothing
Dim objSymbol3 As SolidEdgeFramework.Symbol2d = Nothing

Dim x As Double

Dim y As Double

Dim strSourceDoc As String

Dim objWordDoc As Object = Nothing
Dim objWordApp As Object = Nothing

Try
' Connect to a running instance of Solid Edge
objApplication = Marshal.GetActiveObject ("SolidEdge.Application™)
' Get a reference to the documents collection
objDocuments = objApplication.Documents

' Add a Draft document
objDraft = objDocuments.Add ("SolidEdge.DraftDocument")

' Get a reference to the active sheet
objSheet = objDraft.ActiveSheet

' Get a reference to the symbols collection
objSymbols = objSheet.Symbols

' Create a linked symbol

objSymboll = objSymbols.Add(_
OLEInsertionTypeConstant.igOLELinked,
"C:\MyFile.doc", 0.1, 0.1)

' Create a embedded symbol

objSymbol2 = objSymbols.Add(_
OLEInsertionTypeConstant.igOLEEmbedded,
"C:\MyFile.doc", 0.1, 0.2)

' Create a shared embedded symbol

objSymbol3 = objSymbols.Add(_
OLEInsertionTypeConstant.igOLESharedEmbedded,
"C:\MyFile.doc", 0.1, 0.3)

' Retrieve the origin of the first symbol
objSymboll.GetOrigin (x, y)

' Modify the first symbol's origin
objSymboll.SetOrigin(x + 0.1, yv + 0.1)
' Set the angle of rotation of the first symbol to 45 degrees
(in radians)

objSymboll.Angle = 45 * (Math.PI / 180)

Draft Documents [k

' Find the path to the linked document

If objSymboll.OLEType = OLEInsertionTypeConstant.igOLELinked Then
strSourceDoc = objSymboll.SourceDoc

End If

' Open the source document to modify it
objSymboll.DoVerb(_
SolidEdgeConstants.StandardOLEVerbConstants.igOLEOpen)

' In this case, we know that we're dealing with a word document

' Get a reference the source document dispatch interface

' At this point, you can use the Word API to manipulate the document
objWordDoc = objSymboll.Object

' Get a reference to the word application object
objWordApp = objWordDoc.Application

' Save and close the word document
objWordDoc. Save ()
objWordDoc.Close ()

' Quit word
objWordApp.Quit ()
Catch ex As Exception
Console.WritelLine (ex.Message)
Finally

If Not (objWordApp Is Nothing) Then
Marshal.ReleaseComObject (objWordApp)
objWordApp = Nothing

End If

If Not (objWordDoc Is Nothing) Then
Marshal.ReleaseComObject (objWordDoc)
objWordDoc = Nothing

End If

If Not (objSymbol3 Is Nothing) Then
Marshal.ReleaseComObject (objSymbol3)
objSymbol3 = Nothing

End If

If Not (objSymbol2 Is Nothing) Then
Marshal .ReleaseComObject (objSymbol2)
objSymbol2 = Nothing

End If

If Not (objSymboll Is Nothing) Then
Marshal .ReleaseComObject (objSymboll)
objSymboll = Nothing

End If

If Not (objSymbols Is Nothing) Then
Marshal.ReleaseComObject (objSymbols)
objSymbols = Nothing

End If

If Not (objSheet Is Nothing) Then
Marshal.ReleaseComObject (objSheet)
objSheet = Nothing

End If

If Not (objDraft Is Nothing) Then
Marshal.ReleaseComObject (objDraft)

Draft Documents [kl

objDraft = Nothing
End If
If Not (objDocuments Is Nothing) Then
Marshal.ReleaseComObject (objDocuments)
objDocuments = Nothing
End If
If Not (objApplication Is Nothing) Then
Marshal.ReleaseComObject (objApplication)
objApplication = Nothing
End If
End Try
End Sub
End Module

Symbols Example (C#)

using SolidEdgeFramework;

using System;

using System.Reflection;

using System.Runtime.InteropServices;

namespace MyMacro
{
class Program
{
static void Main(string[] args)
{
SolidEdgeFramework.Application application = null;
SolidEdgeFramework.Documents documents = null;
SolidEdgeDraft.DraftDocument draft = null;
SolidEdgeDraft.Sheet sheet = null;
SolidEdgeFramework.Symbols symbols = null;
SolidEdgeFramework.Symbol2d symboll = null;
SolidEdgeFramework.Symbol2d symbol2 null;
SolidEdgeFramework.Symbol2d symbol3 null;
double x = 0;
double y = 0;
string strSouceDoc;
object wordDoc = null;
object wordApp null;

try
{
// Connect to a running instance of Solid Edge
application = (SolidEdgeFramework.Application)
Marshal.GetActiveObject ("SolidEdge.Application");

// Get a reference to the documents collection
documents = application.Documents;

// Add a Draft document
draft = (SolidEdgeDraft.DraftDocument)
documents.Add ("SolidEdge.DraftDocument", Missing.Value);

// Get a reference to the active sheet
sheet = draft.ActiveSheet;

Draft Documents

// Get a reference to the symbols collection
symbols = (SolidEdgeFramework.Symbols)sheet.Symbols;

// Create a linked symbol

symboll = symbols.Add (
(int)OLEInsertionTypeConstant.igOLELinked,
@'"C:\MyFile.doc",
0.1,
0.1,
Missing.Value) ;

// Create a embedded symbol

symbol2 = symbols.Add (
(int)OLEInsertionTypeConstant.igOLEEmbedded,
@"C:\MyFile.doc",
0.1,
0.2,
Missing.Value) ;

// Create a shared embedded symbol

symbol3 = symbols.Add (
(int)OLEInsertionTypeConstant.igOLESharedEmbedded,
@'"C:\MyFile.doc",
0.1,
0.3,
Missing.Value) ;

// Retrieve the origin of the first symbol
symboll.GetOrigin (out x, out y);

// Modify the first symbol's origin
symboll.SetOrigin(x + 0.2, yv + 0.2);

// Set the angle of rotation of the first symbol to 45 degrees
// (in radians)
symboll.Angle = 45 * (Math.PI / 180);

// Find the path to the linked document
if (symboll.OLEType == OLEInsertionTypeConstant.igOLELinked)
{

strSouceDoc = symboll.SourceDoc;

}

// Open the source document to modify it
symboll.DoVerb (
SolidEdgeConstants.StandardOLEVerbConstants.igOLEOpen) ;

// In this case, we know that we're dealing with a word document

// Get a reference the source document dispatch interface

// At this point, you can use the Word API to manipulate the document
wordDoc = symboll.Object;

// Get a reference to the word application object
wordApp = wordDoc.GetType () .InvokeMember (
"Application", BindingFlags.GetProperty, null, wordDoc, null);

115

116

Draft Documents

// Save and close the word document
wordDoc.GetType () . InvokeMember (

"Save", BindingFlags.InvokeMethod, null, wordDoc, null);
wordDoc.GetType () . InvokeMember (

"Close", BindingFlags.InvokeMethod, null, wordDoc, null);
// Quit word
wordApp.GetType () . InvokeMember (

"Quit", BindingFlags.InvokeMethod, null, wordApp, null);

}

catch

{
Console.WritelLine (ex.Message) ;
}
finally
{
if
{

(System.Exception ex)

(wordApp != null)
Marshal.ReleaseComObject (wordApp) ;
wordApp = null;

}

(wordDoc != null)

Marshal.ReleaseComObject (wordDoc) ;
wordDoc = null;
(symbol3 != null)

Marshal.ReleaseComObject (symbol3) ;
symbol3 = null;
(symbol2 != null)

Marshal.ReleaseComObject (symbol2) ;
symbol2 = null;
(symboll != null)

Marshal.ReleaseComObject (symboll) ;

symboll

Marshal.
symbols

(sheet

Marshal.
sheet =

(draft

Marshal.
draft =

}
if

(symbols

(documents

= null;
= null)

ReleaseComObject (symbols) ;
= null;

= null)

ReleaseComObject (sheet) ;
null;

= null)

ReleaseComObject (draft) ;
null;

'= null)

Draft Documents [kl

{

Marshal .ReleaseComObject (documents) ;
documents = null;

if (application != null)

Marshal .ReleaseComObject (application) ;
application = null;

DrawingViews

A DrawingView object is a 2-D representation of a 3-D part or assembly model. A drawing view is used
to display design space geometry in document space. A view of design space is enclosed by the drawing
view border (a handle that allows manipulation of the drawing view). Only one part or assembly
document can be used as the basis for drawing views in a draft document.

DrawingViews Example (Visual Basic .NET)

Imports
Imports

SolidEdgeFramework
System.Runtime.InteropServices

Module Modulel
Sub Main ()

Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim

Try

objApplication As SolidEdgeFramework.Application = Nothing
objDocuments As SolidEdgeFramework.Documents = Nothing
objDraft As SolidEdgeDraft.DraftDocument = Nothing
objSheet As SolidEdgeDraft.Sheet = Nothing

objModelLinks As SolidEdgeDraft.ModellLinks = Nothing
objModelLink As SolidEdgeDraft.ModellLink = Nothing
objDrawingViews As SolidEdgeDraft.DrawingViews = Nothing
objDrawingView As SolidEdgeDraft.DrawingView = Nothing

Connect to a running instance of Solid Edge

objApplication = Marshal.GetActiveObject ("SolidEdge.RApplication™)

Get a reference to the documents collection

objDocuments = objApplication.Documents

Add a Draft document

objDraft = objDocuments.Add ("SolidEdge.DraftDocument")

Get a reference to the active sheet

objSheet = objDraft.ActiveSheet

Get a reference to the model links collection

objModelLinks = objDraft.ModelLinks

Draft Documents [l

' Add a new model link
objModelLink = objModellLinks.Add("C:\Partl.par")

' Get a reference to the drawing views collection
objDrawingViews = objSheet.DrawingViews

' Add a new drawing view

objDrawingView = objDrawingViews.AddPartView(_
objModelLink,
SolidEdgeDraft.ViewOrientationConstants.igFrontView,
1, _
0.1,
0.1, _
SolidEdgeDraft.PartDrawingViewTypeConstants.sePartDesignedView)

' Assign a caption
objDrawingView.Caption = "My New Drawing View"

' Ensure caption is displayed
objDrawingView.DisplayCaption = True

Catch ex As Exception
Console.WritelLine (ex.Message)
Finally
If Not (objDrawingView Is Nothing) Then
Marshal.ReleaseComObject (objDrawingView)
objDrawingView = Nothing
End If
If Not (objDrawingViews Is Nothing) Then
Marshal.ReleaseComObject (objDrawingViews)
objDrawingViews = Nothing
End If
If Not (objModellLink Is Nothing) Then
Marshal.ReleaseComObject (objModelLink)
objModelLink = Nothing
End If
If Not (objModellLinks Is Nothing) Then
Marshal.ReleaseComObject (objModelLinks)
objModelLinks = Nothing
End If
If Not (objSheet Is Nothing) Then
Marshal.ReleaseComObject (objSheet)
objSheet = Nothing
End If
If Not (objDraft Is Nothing) Then
Marshal.ReleaseComObject (objDraft)
objDraft = Nothing
End If
If Not (objDocuments Is Nothing) Then
Marshal.ReleaseComObject (objDocuments)
objDocuments = Nothing
End If
If Not (objApplication Is Nothing) Then
Marshal.ReleaseComObject (objApplication)
objApplication = Nothing
End If
End Try

Draft Documents [HEE)

End Sub
End Module

DrawingViews Example (C#)

using SolidEdgeFramework;

using System;

using System.Reflection;

using System.Runtime.InteropServices;

namespace MyMacro
{
class Program
{
static void Main(string[] args)
{
SolidEdgeFramework.Application application = null;
SolidEdgeFramework.Documents documents = null;
SolidEdgeDraft.DraftDocument draft = null;
SolidEdgeDraft.Sheet sheet = null;
SolidEdgeDraft.ModellLinks modelLinks = null;
SolidEdgeDraft.ModellLink modelLink = null;
SolidEdgeDraft.DrawingViews drawingViews = null;
SolidEdgeDraft.DrawingView drawingView = null;

try
{
// Connect to a running instance of Solid Edge
application = (SolidEdgeFramework.Application)
Marshal.GetActiveObject ("SolidEdge.Application");

// Get a reference to the documents collection
documents = application.Documents;

// Add a Draft document
draft = (SolidEdgeDraft.DraftDocument)
documents.Add ("SolidEdge.DraftDocument", Missing.Value) ;

// Get a reference to the active sheet
sheet = draft.ActiveSheet;

// Get a reference to the model links collection
modelLinks = draft.ModelLinks;

// Add a new model link
modelLink = modellLinks.Add(Q"C:\Partl.par");

// Get a reference to the drawing views collection
drawingViews = sheet.DrawingViews;

// Add a new drawing view

drawingView = drawingViews.AddPartView (
modelLink,
SolidEdgeDraft.ViewOrientationConstants.igFrontView,
1,
0.1,

Draft Documents [ibA)

0.1,
SolidEdgeDraft.PartDrawingViewTypeConstants.sePartDesignedView) ;

// Assign a caption
drawingView.Caption = "My New Drawing View";

// Ensure caption is displayed
drawingView.DisplayCaption = true;
}

catch (System.Exception ex)

{

Console.WriteLine (ex.Message) ;

}
finally

{
if (drawingView != null)
{
Marshal.ReleaseComObject (drawingView) ;
drawingView = null;
}

if (drawingViews != null)

Marshal .ReleaseComObject (drawingViews) ;
drawingViews = null;

if (modellLink != null)

Marshal .ReleaseComObject (modelLink) ;
modelLink = null;

if (modellinks !'= null)

Marshal.ReleaseComObject (modellLinks) ;
modellLinks = null;

if (sheet != null)

Marshal.ReleaseComObject (sheet) ;
sheet = null;

if (draft != null)

Marshal.ReleaseComObject (draft) ;
draft = null;

if (documents != null)

Marshal .ReleaseComObject (documents) ;
documents = null;

if (application != null)

Marshal.ReleaseComObject (application) ;
application = null;

Draft Documents [kl

Handling Events [l

Chapter 9 - Handling Events

Many objects in Solid Edge provide event sets. These event sets are obtained from objects returned as
properties from the APIs. For example, in order to use the application event set, the
Application.ApplicationEvents property is used.

When you examine the Solid Edge Framework interop assembly, you will see that the type returned
from the ApplicationEvents property is a generic object. This is different from what a user sees when
referencing the type library from VB 6.0 or importing the type library in C++. In those cases, the type
returned is a co-class that supports the event set. This difference does not mean that the object
returned does not support the event set. However, connecting to the event set is slightly different using
the interop assembly.

In order to connect to the event set, the interface for the event set must be obtained from the returned
object. You can do this by declaring the correct event interface and casting the returned object to that
interface. So, for example, in order to connect to the application events event set, you should use the
ApplicationEvents_Event interface.

For VB.NET programmers accustomed to using the "WithEvents" qualifier when declaring an
ApplicationEvents object type, the interop assembly's ApplicationEvents_Event interface is the type that
should be declared.

123

Handling Events

Application Events

Solid Edge has a core set of events that it fires during program execution. You can obtain a reference to
these events by attaching to the ApplicationEvents property of the Application object.

The interface SolidEdgeFramework.ISEApplicationEvents contains the definitions that you will need to
implement the events.

Table of Application Events

Event Description

AfterActiveDocumentChange Occurs after the active document changes.

AfterCommandRun Occurs after a specified command is run.

AfterDocumentOpen Occurs after a specified document is opened.

AfterDocumentPrint

Occurs after a specified document is printed.

AfterDocumentSave

Occurs when a specified document is saved.

AfterEnvironmentActivate

Occurs when a specified environment is activated.

AfterNewDocumentOpen

Occurs after a new document is opened

AfterNewWindow

Occurs after a new document is opened.

AfterWindowActivate

Occurs after a specified window is activated.

BeforeCommandRun

Occurs before a specified command is run.

BeforeDocumentClose

Occurs before a specified document is closed.

BeforeDocumentPrint

Occurs before a specified document is printed.

BeforeDocumentSave

Occurs before a specified document is saved.

BeforeEnvironmentDeactivate

Occurs before a specified environment is deactivated.

BeforeQuit

Occurs before the associated application is closed.

BeforeWindowDeactivate

Occurs before a specified window is deactivated.

Sinking Application Events (Visual Basic.NET)

Imports System.Runtime.InteropServices

Public Class Forml
Private objApplication As SolidEdgeFramework.Application
Private WithEvents objAppEvents As
SolidEdgeFramework.ISEApplicationEvents_Event

Private Sub Forml_Load(ByVal sender As System.Object,
System.EventArgs) Handles MyBase.Load
Try
' Connect to a running instance of Solid Edge
objApplication Marshal.GetActiveObject ("SolidEdge.Application")

ByVal e As

Get a reference to the application events
objAppEvents objApplication.ApplicationEvents
Catch ex As Exception
Console.WritelLine (ex.Message)
End Try
End Sub

Handling Events [il2i!

Private Sub Forml_FormClosing(ByVal sender As System.Object, ByVal e As
System.Windows.Forms.FormClosingEventArgs) Handles MyBase.FormClosing
If Not (objAppEvents Is Nothing) Then
Marshal.ReleaseComObject (objAppEvents)
objAppEvents = Nothing
End If
If Not (objApplication Is Nothing) Then
Marshal.ReleaseComObject (objApplication)
objApplication = Nothing
End If
End Sub

Once you have a valid reference to the events, you can select the specific event that you wish to watch

from the Declarations dropdown.

29 MyMacro - Microsoft Visual Studio |’._|[’E|[Z|
File Edit Wiew Projeck Build Debug Data Tools Window Commuonity Help
IR SEERA- N ™ N N EENE N &~ L | b Debug - ’;’
A R R LR RN 2N A
}J;_' Forml.vb . “Forml.wb | Forml.wb [Design] - X JEI.I
§ | ¥ objAppEvents V| [El{peclarations) w g
g Imports Sgstem.Runtime.InternpSEiEj(DEEhrﬂﬁﬂﬂS} g
b AfterdctiveDocument Change h |
5 Public Class Forml 4 AfterCommandRun ET
Private chilpplication A= Soli ?iA&HDDﬂmEmOPH1 %
Private WithEwvents DthppEvent.7'nﬁmDDmmempmt @#
& AfterDocumnentSave =
, : :
. o AfterEnvironmentAckivate)
] F te Zub F 1 Load(Eyval
H r:l{.'va & grml: hoad CRRlS SE;ﬁ'ﬁFtEFNEWDDEUFﬂEHtOpEH
L y . : & AfterMesiwindow
Dhqﬂppllcatlnn = #arShél'GfnyHHNWMDwAdWam
okbhjippEvents = objhpplicat # BeforeCommandRun
Catch ex As Exception # BeforeDocumentClose
Console.Writeline (ex.Messa & BeforeDocumentPrint
End <+ BeforeDocumentSave
End Try 4 BeforeEnvironmentDeactivate
- End Zub + BeforeQuit
< BeforewindowDeactivate
£ .
_'a Erraor Lisk ﬁ]; Find Symbal Results
Ttem(s) Saved Ln 26 Col 10 Ch 10 INS

Figure 9-1 - Sinking Application Events

Sinking Application Events (C#)

using System;

Handling Events [ils

using System.Runtime.InteropServices;
using System.Windows.Forms;

namespace MyMacro
{
public partial class Forml : Form
{
private SolidEdgeFramework.Application application;
private SolidEdgeFramework.ISEApplicationEvents_Event appEvents;

public Forml ()
{

InitializeComponent () ;

private void Forml_Load (object sender, EventArgs e)
{
try
{
// Connect to a running instance of Solid Edge
application = (SolidEdgeFramework.Application)
Marshal.GetActiveObject ("SolidEdge.Application");

// Get a reference to the application events
appEvents = (SolidEdgeFramework.ISEApplicationEvents_Event)
application.ApplicationEvents;

// Example sink of AfterCommandRun
appEvents.AfterCommandRun += new

SolidEdgeFramework.ISEApplicationEvents_AfterCommandRunEventHandler (appEvents
_AfterCommandRun) ;

}
catch (System.Exception ex)

{

Console.WriteLine (ex.Message) ;

private void Forml_FormClosing(object sender, FormClosingEventArgs e)

{
if (appEvents != null)
{
Marshal .ReleaseComObject (appEvents) ;
appEvents = null;

if (application != null)

Marshal.ReleaseComObject (application) ;
application = null;

void appEvents_AfterCommandRun (int theCommandID)
{
}

Handling Events WIS

Application Window Events

The application window events allow you to watch messages being sent to the Solid Edge main window.
This is similar subclassing a window and watching for SendMessage() calls. The WindowProc event is a
"chatty" event so care should be taken when sinking this event. Long running code in this event can
severely slow down the application. You can obtain a reference to these events by attaching to the
ApplicationWindowEvents property of the Application object.

The interface SolidEdgeFramework.ISEApplicationWindowEvents contains the definitions that you will
need to implement the events.

Table of Application Window Events

Event Description

WindowProc Occurs when the application receives a window event.

Sinking Application Window Events (Visual Basic.NET)

Imports System.Runtime.InteropServices
Public Class Forml
Private objApplication As SolidEdgeFramework.Application
Private WithEvents objAppWindowEvents As
SolidEdgeFramework.ISEApplicationWindowEvents_Event

Private Sub Forml_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
Try
' Connect to a running instance of Solid Edge
objApplication = Marshal.GetActiveObject ("SolidEdge.Application™")
' Get a reference to the application window events
objAppWindowEvents = objApplication.ApplicationWindowEvents
Catch ex As Exception
Console.WritelLine (ex.Message)
End Try
End Sub

Private Sub Forml_FormClosing(ByVal sender As System.Object, ByVal e As
System.Windows.Forms.FormClosingEventArgs) Handles MyBase.FormClosing
If Not (objAppWindowEvents Is Nothing) Then
Marshal.ReleaseComObject (objAppWindowEvents)
objAppWindowEvents = Nothing
End If
If Not (objApplication Is Nothing) Then
Marshal.ReleaseComObject (objApplication)
objApplication = Nothing
End If
End Sub

Handling Events

Private Sub objAppWindowEvents_WindowProc (ByVal hWnd As Integer, ByVal nMsg
As Integer, ByVal wParam As Integer, ByVal lParam As Integer) Handles

objAppWindowEvents.WindowProc

End Sub
End Class

Once you have a valid reference to the events, you can select the specific event that you wish to watch

from the Declarations dropdown.

DEx

&% MyMacro - Microsoft Visual Studio

File Edit Wiew Project Build Debug Data Tools Window Community Help

AT

- EH @ 9o S E o -
T He B As | EF S (] lg & (3 4 5h s
};_' Forml.vb_“Formil.wb | Formil.wb [Design] v X JEH
é_‘ | 2 objfppWindowEyvents v| {Zl{peclarations) v | g
§ Imports System.Runtime. InteropSe]{Declarations) g
] Public Class Forml |18
o
Priwvate objlipplication Az SJolidEdgeFramework.Application 2
Private WithEvents obhjippWindowEvents Az JolidEdgeFramework.IZEL éﬂ
Z
= Priwvate Jub Forml Load(ByVal sender As System.Chject, EyWal e As— |l
Try
objipplication = Marshal.GetlActivedhject ("Io0lidEdge. Applicat
ohjAppWindowEvents = objlApplication.ApplicationWindowEvents
Catch ex Lz Exception
Console.Writeline (ex.Message)
End
End Try
~ End Sub
bt
| £ ¥
—_E! Error Lisk d'él Find Sw;.-'mi:u:ul Results.
Build succeeded Ln 7 Col 45 Ch 45 IS

Figure 9-2 - Sinking Application Window Events

Sinking Application Window Events (C#)
using System;

using System.Runtime.InteropServices;
using System.Windows.Forms;

namespace MyMacro

{

public partial class Forml : Form

{

Handling Events

private SolidEdgeFramework.Application application;
private SolidEdgeFramework.ISEApplicationWindowEvents_Event
appWindowEvents;

public Forml ()
{

InitializeComponent () ;

private void Forml_Load(object sender, EventArgs e)
{
try
{
// Connect to a running instance of Solid Edge
application = (SolidEdgeFramework.Application)
Marshal.GetActiveObject ("SolidEdge.Application");

// Get a reference to the application window events

appWindowEvents =
(SolidEdgeFramework.ISEApplicationWindowEvents_Event)
application.ApplicationWindowEvents;

// Example sink of WindowProc
appWindowEvents.WindowProc += new
SolidEdgeFramework.ISEApplicationWindowEvents_WindowProcEventHandler
(appWindowEvents_WindowProc) ;
}
catch (System.Exception ex)
{

Console.WriteLine (ex.Message) ;

private void Forml_FormClosing(object sender, FormClosingEventArgs e)
{
if (appWindowEvents != null)
{
Marshal.ReleaseComObject (appWindowEvents) ;
appWindowEvents = null;

if (application != null)

Marshal.ReleaseComObject (application) ;
application = null;

void appWindowEvents_WindowProc

(int hWnd, int nMsg, int wParam, int lParam)
{
}

128

Handling Events [HPE)

Document Events

The document events allow you to watch events for a specific document object. You can obtain a
reference to these events by attaching to the DocumentEvents property of any document object.

The interface SolidEdgeFramework. ISEDocumentEvents contains the definitions that you will need to
implement the events.

Table of Document Events

Event Description

AfterSave Occurs after the associated document is saved.
BeforeClose Occurs before the associated document is closed.
BeforeSave Occurs before the associated document is saved.
SelectSetChanged | Occurs when the specified selection set changes.

Sinking Document Events (Visual Basic.NET)

Imports System.Runtime.InteropServices
Public Class Forml
Private objApplication As SolidEdgeFramework.Application
Private WithEvents objDocumentEvents As
SolidEdgeFramework.ISEDocumentEvents_Event

Private Sub Forml_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
Dim objDocument As SolidEdgeFramework.SolidEdgeDocument = Nothing
Try
' Connect to a running instance of Solid Edge
objApplication = Marshal.GetActiveObject ("SolidEdge.Application™")
' Get a reference to the active document
objDocument = objApplication.ActiveDocument
' Get a reference to the document events
objDocumentEvents = objDocument.DocumentEvents
Catch ex As Exception
Console.WritelLine (ex.Message)
Finally
If Not (objDocument Is Nothing) Then
Marshal.ReleaseComObject (objDocument)
objDocument = Nothing
End If
End Try
End Sub

Private Sub Forml_FormClosing(ByVal sender As System.Object, ByVal e As
System.Windows.Forms.FormClosingEventArgs) Handles MyBase.FormClosing

If Not (objDocumentEvents Is Nothing) Then
Marshal.ReleaseComObject (objDocumentEvents)
objDocumentEvents = Nothing

End If

If Not (objApplication Is Nothing) Then
Marshal.ReleaseComObject (objApplication)
objApplication = Nothing

Handling Events [l

End If
End Sub
End Class

Once you have a valid reference to the events, you can select the specific event that you wish to watch

from the Declarations dropdown.

@9 MyMacro - Microsoft Visual Studio Z E'E'
File Edit Wiew Project Build Debug Data Tools Window Community Help

TRAERA- N " B - N SEEREN Ry B & - b Debug : M
e 003 53 8B 0

Xf_' W Fu:urml.'-.fl.:.u-[Design] L 4

é_' | g# objDiocumentEvents V|E§§{Declaratiuns} b

g

=

Imports S?stem.Runtime.InternpSeig{DﬂﬁﬂﬂﬁD"ﬂ
¥ m
+ BeforeClose

[F]Public Class Forml
F
Private ckbjkpplication As Soli TiBﬁDmS&E
Priwvate WithEwvents DbjDDcument'VSEhdSﬂChm@Ed .

wapl| "E— Jauoch: 3 uonnos E__-:.

= Private Sub Forml Load(ByWal sender Az 3ystem.Chject, ByWal e A=
Dim abhjDocument As JolidEdgeFramework.ZolidEdgelocwament = Notl
Try
ochijApplication = Marshal.GetlctiveClhject ("Io0lidEdge. bpplicat
chjDocuwent = ohjidpplication. Activelocwument
obhjlbocuentEvents = objlocument . DocunentEvents
Catch ex Az Exception
Console.Writeline (ex.Message)

Finally
If Mot [(objDocuwment I= Nothing) Then L
< | >
_'a Error List ﬂ'é'_l Find Symbol Resulks
Item(s) Saved Ln Col 36 Ch 36 NS

Figure 9-3 - Sinking Document Events

Sinking Document Events (C#)

using System;

using System.Runtime.InteropServices;
using System.Windows.Forms;

namespace MyMacro

{

public partial class Forml : Form
{
private SolidEdgeFramework.Application application;
private SolidEdgeFramework.ISEDocumentEvents_Event docEvents;

Handling Events [kl

public Forml ()
{

InitializeComponent () ;

private void Forml_Load (object sender, EventArgs e)

{

SolidEdgeFramework.SolidEdgeDocument document = null;

try
{
// Connect to a running instance of Solid Edge
application = (SolidEdgeFramework.Application)
Marshal.GetActiveObject ("SolidEdge.Application");

// Get a reference to the active document

document =
(SolidEdgeFramework.SolidEdgeDocument)
application.ActiveDocument;

// Get a reference to the document events
docEvents = (SolidEdgeFramework.ISEDocumentEvents_Event)
document .DocumentEvents;
}
catch (System.Exception ex)
{
Console.WriteLine (ex.Message) ;
}
finally
{
if (document != null)
{
Marshal.ReleaseComObject (document) ;

}

private void Forml_FormClosing(object sender, FormClosingEventArgs e)

{

if (docEvents != null)

{
Marshal .ReleaseComObject (docEvents) ;
docEvents = null;

if (application != null)

Marshal .ReleaseComObject (application) ;
application = null;

Handling Events kP

File Ul Events

The File Ul events allow you to watch for specific Ul events. The File Ul events are somewhat different
in other events because if you do not wish to override the default functionality, you must throw a
System.NotlmplementedException. Failure to do so will indicate to Solid Edge that you have a custom
Ul that you wish to display to the user. You can obtain a reference to these events by attaching to the
FileUlIEvents property of the Application object.

The interface SolidEdgeFramework. ISEFileUIEvents contains the definitions that you will need to
implement the events.

Table of File Ul Events

Event Description

OnCreatelnPlacePartUl gscsc:r:lsbtl)ifore the user interface is displayed for a part created in place by Solid Edge
OnFileNewUlI Occurs before the user interface is created for a new Solid Edge file.

OnFileOpenUl Occurs before the creation of the user interface for the file opened by Solid Edge.
OnFileSaveAsImageUl Occurs before the user interface is created for the file saved as image by Solid Edge.

Occurs before the user interface is created by the file saved by Solid Edge as another

OnFileSaveAsUl .
file.

OnPlacePartUl Occurs before the user interface is created for a part placed by Solid Edge Assembly.

Sinking File Ul Events (Visual Basic.NET)

Imports System.Runtime.InteropServices

Public Class Forml
Private objApplication As SolidEdgeFramework.Application
Private WithEvents objFileUIEvents As
SolidEdgeFramework.ISEFileUIEvents_Event

Private Sub Forml_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
Try
' Connect to a running instance of Solid Edge
objApplication = Marshal.GetActiveObject ("SolidEdge.RApplication™)

' Get a reference to the file UI events
objFileUIEvents = objApplication.FileUIEvents
Catch ex As Exception
Console.WritelLine (ex.Message)
End Try
End Sub

Private Sub Forml_FormClosing(ByVal sender As System.Object, ByVal e As
System.Windows.Forms.FormClosingEventArgs) Handles MyBase.FormClosing

If Not (objFileUIEvents Is Nothing) Then
Marshal.ReleaseComObject (objFileUIEvents)
objFileUIEvents = Nothing

End If

If Not (objApplication Is Nothing) Then
Marshal.ReleaseComObject (objApplication)

Handling Events

objApplication = Nothing
End If
End Sub

Private Sub objFileUIEvents_OnFileSaveAsUI (ByRef Filename As String, ByRef

AppendToTitle As String) Handles objFileUIEvents.OnFileSaveAsUI
'If you do not plan on implementing your own UI but wish to allow
'the default UI, you must throw a NotImplementedException exception.
Throw New System.NotImplementedException ()
End Sub
End Class

Once you have a valid reference to the events, you can select the specific event that you wish to watch

from the Declarations dropdown.

&9 MyMacro - Microsoft Visual Studio ._ 'E|[Z|
File Edit Wiew Project Build Debug Daka Tools wWindow Community Help

Al T

A=A " N NN A R R

= b ax | 35 S Q23 a3 AR,

Forml.wb “Forml.wb | Forml.wh [Design] - X |

| 2 obiFileUIEvents V| [{peclarations) w

X000 | q}(c'.

Imports System. Runtiwe. InteropSeil(Declarations)
e OnCreatelnPlacePartUl
28 OnFilefewll

+ OnFileCpenll

& OnFileSavessImagell
+# OrFileSavessUI

< OnPlacePartUl

[[] Public Class Forml
FPrivate objhpplication A= 3oli
Priwvate WithEwvents ocbjFileUIEw

wapl| "f.,-;"_ Jaunch: 3 uannos E__-:,

= Private Zub Forwl Load(ByVal stooer = wyooomrem oo orv=s = ==
Ty
ochijhpplication = Marshal.GetlictiveClhject ("Io0lidEdge. bpplicat
och]jFileUIEvents = objhpplication.FilelUIEwvents
Catch ex Az Exception
Conzole.Writeline (ex. Hessage)
End Try
~ End 3ub

E Priwvate Zub Forwl FormClozing (ByWal sender A= Iystem.Object, Byl
£ i >

_"a Erraor Lisk m Find Symbol Fesulks

Build succeeded Lm 1 Cal 11 Chi1 IS

Figure 9-4 - Sinking File Ul Events

Sinking File UI Events (C#)

using System;
using System.Runtime.InteropServices;
using System.Windows.Forms;

namespace MyMacro

Handling Events

public partial class Forml : Form
{
private SolidEdgeFramework.Application application;
private SolidEdgeFramework.ISEFileUIEvents_Event fileUIEvents;

public Forml ()
{
InitializeComponent () ;

}

private void Forml_Load (object sender, EventArgs e)
{
try
{
// Connect to a running instance of Solid Edge
application = (SolidEdgeFramework.Application)

Marshal.GetActiveObject ("SolidEdge.Application");

// Get a reference to the file UI events

fileUIEvents = (SolidEdgeFramework.ISEFileUIEvents_Event)
application.FileUIEvents;

// Example sink of OnFileSaveAsUI event
fileUIEvents.OnFileSaveAsUI += new

SolidEdgeFramework.ISEFileUIEvents_OnFileSaveAsUIEventHandler (fileUIEvents_On
FileSaveAsUI) ;

}
catch (System.Exception ex)

{

Console.WriteLine (ex.Message) ;

private void Forml_FormClosing(object sender,

{

FormClosingEventArgs e)

if (fileUIEvents != null)
{

Marshal.ReleaseComObject (fileUIEvents) ;
fileUIEvents = null;

if (application != null)

Marshal.ReleaseComObject (application) ;
application = null;

void fileUIEvents_OnFileSaveAsUI (out string Filename,
AppendToTitle)

{

out string

// If you do not plan on implementing your own UI but wish to allow

// the default UI, you must throw a NotImplementedException exception.
throw new System.NotImplementedException();

134

Handling Events FHEE]

View Events

The view events allow you to watch for view events for a specific window's 3D view. You can obtain a
reference to these events by attaching to the ViewEvents property of a View object.

The interface SolidEdgeFramework. ISEViewEvents contains the definitions that you will need to
implement the events.

Table of View Events

Event Description

Changed Occurs when the associated view definition changes.
Destroyed Occurs when the associated view is destroyed.
StyleChanged Occurs when a view style changes.

Sinking View Events (Visual Basic.NET)

Imports System.Runtime.InteropServices

Public Class Forml
Private objApplication As SolidEdgeFramework.Application
Private WithEvents objViewEvents As SolidEdgeFramework.ISEViewEvents_Event

Private Sub Forml_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
Dim objWindow As SolidEdgeFramework.Window = Nothing
Dim objView As SolidEdgeFramework.View = Nothing
Try
' Connect to a running instance of Solid Edge
objApplication = Marshal.GetActiveObject ("SolidEdge.Application™)
' Get a reference to the active window
objWindow = objApplication.ActiveWindow 'Must be a 3D window
' Get a reference to the window's view
objView = objWindow.View
' Get a reference to the view events
objViewEvents = objView.ViewEvents
Catch ex As Exception
Console.WritelLine (ex.Message)
Finally
If Not (objView Is Nothing) Then
Marshal.ReleaseComObject (objView)
objView = Nothing
End If
If Not (objWindow Is Nothing) Then
Marshal .ReleaseComObject (objWindow)
objWindow = Nothing
End If
End Try
End Sub

Handling Events [HE[S

Private Sub Forml_FormClosing(ByVal sender As System.Object, ByVal e As
System.Windows.Forms.FormClosingEventArgs) Handles MyBase.FormClosing
If Not (objViewEvents Is Nothing) Then
Marshal.ReleaseComObject (objViewEvents)
objViewEvents = Nothing

End If
If Not (objApplication Is Nothing) Then

Marshal.ReleaseComObject (objApplication)
objApplication = Nothing
End If
End Sub
End Class

Once you have a valid reference to the events, you can select the specific event that you wish to watch

from the Declarations dropdown.

B(=1[E

#% MyMacro - Microsoft Visual Studio

File Edit Wiew Project Build Debug Data Tools Window Cammunity Help

:[u 3

YRR RA=A" W A NN & =5 | b Debug)
T b as | 2= st O3 a3 &5 G
}J;_' Forml.wb “Forml.wb | Forml.wb [Design] - X JEH
é_' | ¥ objviewEvents V| E::g{Declaratiuns} A g
§ Imports System.Runtime. InteropSeil(Declarations) g
%W I
o
5 Public Class Forml + Destroyed g
¥ 1]
Private objlpplication ks Solily ~tylechanged . o
Private WithEvents objViewEwvents Az JolidEdgeFramework. ISEViewEw @#
= Priwvate Zub Forml Load(ByVal sender Ls Zystem.Chject, ByWal e A= 2
Dim aobjWindow Az SolidEdgeFramework.Window = MNothing
Dim objView Az SolidEdgeFrammework.View = Nothing
Try
ochijkpplication = Marshal.GetlictiveChiject ("IolidEdge. Applicat
chiWindow = ohjipplication.ActiveWindow 'Must he a 3D windou
ochiView = ocbhjWindow.View
ochiViewEvents = ob]View.ViewEvents
Catch ex LAz Exception
Console.Writeline (ex.Message) bt
S | -
_'a. Errar Lisk ﬂ'él Find Symbal Results
Build succeeded Ln 4 ol 35 Ch3as INS

Figure 9-5 - Sinking View Events

Sinking View Events (Visual Basic.NET)

using System;
using System.Runtime.InteropServices;

Handling Events

using System.Windows.Forms;

namespace MyMacro
{
public partial class Forml : Form
{
private SolidEdgeFramework.Application application;
private SolidEdgeFramework.ISEViewEvents_Event viewEvents;

public Forml ()
{

InitializeComponent () ;

private void Forml_Load (object sender, EventArgs e)
{
SolidEdgeFramework.Window window = null;
SolidEdgeFramework.View view = null;

try
{
// Connect to a running instance of Solid Edge
application = (SolidEdgeFramework.Application)
Marshal.GetActiveObject ("SolidEdge.Application");

// Get a reference to the active window
window = (SolidEdgeFramework.Window)
application.ActiveWindow; //Must be a 3D window

// Get a reference to the window's view
view = window.View;

// Get a reference to the view events
viewEvents = (SolidEdgeFramework.ISEViewEvents_ Event)
view.ViewEvents;

// Example sink of the Chaged event
viewEvents.Changed += new
SolidEdgeFramework.ISEViewEvents_ChangedEventHandler (viewEvents_Changed) ;
}
catch (System.Exception ex)
{
Console.WritelLine (ex.Message) ;
}
finally
{
if (view != null)
{
Marshal.ReleaseComObject (view) ;
view = null;

if (window != null)

Marshal.ReleaseComObject (window) ;
window = null;

137

Handling Events e

}

void viewEvents_Changed ()
{
}

private void Forml_FormClosing(object sender, FormClosingEventArgs e)

{

if (viewEvents != null)

{
Marshal .ReleaseComObject (viewEvents) ;
viewEvents = null;

if (application != null)

Marshal .ReleaseComObject (application) ;
application = null;

Display Events

The display events allow you to watch for display events for a specific window's 3D view. You can obtain

a reference to these events by attaching to the DisplayEvents property of a View object.

The interface SolidEdgeFramework. ISEhDCDisplayEvents contains the definitions that you will need to
implement the events.

Table of Display Events

Event Description

BeginDisplay Occurs before Solid Edge display begins.

BeginhDCMainDisplay | Occurs before the main display to enable HDC-based clients to support underlay.

EndDisplay Occurs after Solid Edge displays ends.

EndhDCMainDisplay Occurs after the main display to enable HDC-based clients to support overlay.

Sinking Display Events (Visual Basic.NET)

Imports System.Runtime.InteropServices

Public Class Forml
Private objApplication As SolidEdgeFramework.Application
Private WithEvents objDisplayEvents As
SolidEdgeFramework.ISEhDCDisplayEvents_Event

Private Sub Forml_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
Dim objWindow As SolidEdgeFramework.Window = Nothing
Dim objView As SolidEdgeFramework.View = Nothing
Try
' Connect to a running instance of Solid Edge
objApplication = Marshal.GetActiveObject ("SolidEdge.Application™)

Handling Events FHEE)

' Get a reference to the active window

objApplication.ActiveWindow 'Must be a 3D window

objWindow =
' Get a reference to the window's view
objView = objWindow.View

' Get a reference to the view's display events
objDisplayEvents = objView.DisplayEvents

Catch ex As Exception
Console.WritelLine (ex.Message)

Finally
If Not (objView Is Nothing) Then

Marshal.ReleaseComObject (objView)
objView = Nothing

End If
If Not (objWwindow Is Nothing) Then

Marshal.ReleaseComObject (objWindow)
objWindow = Nothing
End If
End Try
End Sub

Private Sub Forml_FormClosing(ByVal sender As System.Object, ByVal e As
System.Windows.Forms.FormClosingEventArgs) Handles MyBase.FormClosing
If Not (objDisplayEvents Is Nothing) Then
Marshal.ReleaseComObject (objDisplayEvents)
objDisplayEvents = Nothing

End If
If Not (objApplication Is Nothing) Then

Marshal.ReleaseComObject (objApplication)
objApplication = Nothing
End If
End Sub
End Class

Once you have a valid reference to the events, you can select the specific event that you wish to watch

from the Declarations dropdown.

2% MyMacro - Microsoft Visual Studio

Handling Events

Taoals

File Edit Wiew Project Build Debug Data

\indo
o Debug

- __I

Carnruniky

Help

-

1 e B oas | £= S = W

L B85 e

Forml.vb [Design]

:tu 3

| ¥ objDisplayEvents w |

[El{peclarations)

XOgoo | Qf‘{.

[Public Class Forml
Priwvate obhjhpplication As 2o0li

Imports Sgstem.Runtime.Internpﬂeigfﬂﬂdmﬂﬁﬂﬂﬂ

¥
- BROS Beaeanan e
BeqginhD”MainDisplay

#
4 EndDisplay

FPrivate WithEwvents objDlisplayEd

< EndhDiCMainDisplay

=r

Dim aobjWindow A=z SolidEdgeFramework.Window
Dim objView Az SolidEdgeFrammework.View

Ty

Priwvate Zub Forml Load(ByVal sender ALs Zystem.Chject, ByWVal e A=

= Nothing

Nothing

[oo t%"_ Jauodx 3 uonnjos E‘-‘"

objipplication
ochiWindow =
obhijview
ochilisplavEvents

ohijhipplication. ActiveWindow
objWindow.View

Marshal.Gethctivedhject ("3o0lidEdge. bpplicat
'Must be a 3D window

ochiView.DisplayEvents

Catch ex As Exception
Console.Writeline (ex.Mesza

| £ |

_'a Errar Lisk ﬂ'él Find Symbal Results

e

|
54

Ttemis) Saved

Lm 24

Col 25

ch 23

INS

Figure 9-6 - Sinking Display Events

Sinking Display Events (C#)

using System;

using System.Runtime.InteropServices;
using System.Windows.Forms;

namespace MyMacro

{

public partial class Forml Form

{

private SolidEdgeFramework.Application application;
private SolidEdgeFramework.ISEhDCDisplayEvents_Event displayEvents;

public Forml ()
{

InitializeComponent () ;

private void Forml_Load(object sender,

{

SolidEdgeFramework.Window window
SolidEdgeFramework.View view

EventArgs

null;

null;

e)

140

Handling Events

try

{

// Connect to a running instance of Solid Edge
application = (SolidEdgeFramework.Application)
Marshal.GetActiveObject ("SolidEdge.Application");

// Get a reference to the active window
window = (SolidEdgeFramework.Window)
application.ActiveWindow; //Must be a 3D window

// Get a reference to the window's view
view = window.View;

// Get a reference to the view's display events
displayEvents = (SolidEdgeFramework.ISEhDCDisplayEvents_Event)
view.DisplayEvents;

// Example sink of the BeginDisplay Event
displayEvents.BeginDisplay += new

SolidEdgeFramework.ISEhDCDisplayEvents_BeginDisplayEventHandler (displayEvents
_BeginDisplay) ;

}

catch (System.Exception ex)

{

}

Console.WriteLine (ex.Message) ;

finally

{

if (view != null)

{

Marshal .ReleaseComObject (view) ;
view = null;

if (window != null)

Marshal .ReleaseComObject (window) ;
window = null;

void displayEvents_BeginDisplay ()

{
}

private void Forml_FormClosing(object sender, FormClosingEventArgs e)

{

if (displayEvents != null)

{

}

Marshal .ReleaseComObject (displayEvents) ;
displayEvents = null;

if (application != null)

{

Marshal .ReleaseComObject (application) ;
application = null;

141

Handling Events

GL Display Events

The GL display events allow you to watch for OpenGL related display events for a specific window's 3D
view. You can obtain a reference to these events by attaching to the GLDisplayEvents property of a
View object.

The interface SolidEdgeFramework. ISEIGLDisplayEvents contains the definitions that you will need to
implement the events.

Table of GL Display Events

Event Description

BeginDisplay Occurs before Solid Edge display begins.

BeginlGLMainDisplay | Occurs before the main display to enable GL-based clients to support underlay.
EndDisplay Occurs after Solid Edge displays ends.

EndIGLMainDisplay Occurs after the main display to enable GL-based clients to support overlay.

Sinking GL Display Events (Visual Basic.NET)

Imports System.Runtime.InteropServices

Public Class Forml
Private objApplication As SolidEdgeFramework.Application
Private WithEvents objDisplayEvents As
SolidEdgeFramework.ISEIGLDisplayEvents_Event

Private Sub Forml_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
Dim objWindow As SolidEdgeFramework.Window = Nothing
Dim objView As SolidEdgeFramework.View = Nothing
Try
' Connect to a running instance of Solid Edge
objApplication = Marshal.GetActiveObject ("SolidEdge.RApplication™)

' Get a reference to the active window
objWindow = objApplication.ActiveWindow 'Must be a 3D window

' Get a reference to the window's view
objView = objWindow.View

' Get a reference to the view's display events
objDisplayEvents = objView.GLDisplayEvents
Catch ex As Exception
Console.WritelLine (ex.Message)
Finally
If Not (objView Is Nothing) Then
Marshal.ReleaseComObject (objView)
objView = Nothing

142

Handling Events [HiliE]

End If
If Not (objWindow Is Nothing) Then
Marshal.ReleaseComObject (objWindow)
objWindow = Nothing
End If
End Try
End Sub

Private Sub Forml_FormClosing(ByVal sender As System.Object, ByVal e As
System.Windows.Forms.FormClosingEventArgs) Handles MyBase.FormClosing
If Not (objDisplayEvents Is Nothing) Then
Marshal.ReleaseComObject (objDisplayEvents)
objDisplayEvents = Nothing
End If
If Not (objApplication Is Nothing) Then
Marshal.ReleaseComObject (objApplication)
objApplication = Nothing
End If
End Sub
End Class

Handling Events [k

Once you have a valid reference to the events, you can select the specific event that you wish to watch

from the Declarations dropdown.

B=1Ey

20 MyMacro - Microsoft Visual Studio

File Edit Wiew Project Build Debug Data Tools Window Commuonity Help

:[u 3

EIRSERA-A"™ W= B - &~ 5, | b Debug -
i B
}; Forml.wb “Forml.wb | Forml.wb [Design] - X 2
é_' | ¥ objDisplayEvents V|E§§{DEEIaratiun5} w g
[ay 5 ==
2 Imports System.Runtime.InteropSeil{Declarations) g
%m I
O Public Clas= Forml 4 BeginIGLMainCisplay =3
¥ i 1]
Private obhjhApplication As 3oli T;BMDEDH? . o
Frivate WithEwvents |:|1:|jItlispla‘g,rE'7"E'-":IIGI‘ME"'-'I:"Slz'lal"f - &#
o |
m
=

Private Sub Forml Load(ByVal sender Ls Zwystem.Obhject, ByVal e A=
Dim objWindow Az SolidEdgeFramework.Window = MNothing

Dim okhijview ALz JolidEdgeFrawework.View = Nothing

Tevy
chijipplication = Marshal.GetlictiveChject ("IolidEdge.Applicart
ochiWindow = okhjipplication.ActiveWindow 'Must he a2 3D windon
ochiView = ocbhjWindow.View
ochilizplayEventz = ob]jView.GLDisplavEvents

Catch ex Az Exception

Conzole.Writeline (ex.Mezszage) W
¢ | b/
_'\é Errar Lisk ﬂ'él Find Symbal Results
Build succeeded Ln 25 Col 13 Chi3 INS

9-7 - Sinking GL Display Events

Sinking GL Display Events (C#)

using System;

using System.Runtime.InteropServices;
using System.Windows.Forms;

namespace MyMacro

{

public partial class Forml : Form
{

private SolidEdgeFramework.Application application;

private SolidEdgeFramework.ISEIGLDisplayEvents_Event displayEvents;

public Forml ()
{

InitializeComponent () ;

Handling Events

private void Forml_Load (object sender, EventArgs e)

{

SolidEdgeFramework.Window window = null;
SolidEdgeFramework.View view = null;

try

{

// Connect to a running instance of Solid Edge
application = (SolidEdgeFramework.Application)
Marshal.GetActiveObject ("SolidEdge.Application");

// Get a reference to the acrtive window
window = (SolidEdgeFramework.Window)
application.ActiveWindow; //Must be a 3D window

// Get a reference to the window's view
view = window.View;

// Get a reference to the view's display events
displayEvents = (SolidEdgeFramework.ISEIGLDisplayEvents_Event)

view.GLDisplayEvents;

// Example sink of the BeginDisplay event
displayEvents.BeginDisplay += new

SolidEdgeFramework.ISEIGLDisplayEvents_BeginDisplayEventHandler (displayEvents

_BeginDisplay) ;

}

catch (System.Exception ex)

{

}

Console.WriteLine (ex.Message) ;

finally

{

if (view != null)

{

Marshal.ReleaseComObject (view) ;
view = null;

if (window != null)

Marshal.ReleaseComObject (window) ;
window = null;

void displayEvents_BeginDisplay ()

{
}

private void Forml_FormClosing(object sender, FormClosingEventArgs e)

{

if (displayEvents != null)

{

Marshal .ReleaseComObject (displayEvents) ;

145

Handling Events [

displayEvents = null;

}

if (application != null)

{
Marshal .ReleaseComObject (application) ;
application = null;

}

File Properties

Chapter 10 - File Properties

Solid Edge supports five property sets: summary information, extended summary information, project

information, document information, and mechanical modeling. In addition, there is a Custom property

set which gives access to all user-created properties defined through the Custom pane on the Properties

dialog box.

Although each Solid Edge file type is different, the following table lists common file properties:

Table of File Properties

Property Set Property Name Maintained | Variant Type .NET Type
Custom <User Defined> X Any Any
DocumentSummarylnformation | Bye Count VT_l4 System.Int32
DocumentSummarylinformation | Category X VT_LPSTR System.String
DocumentSummarylnformation | Company VT_LPSTR System.String
DocumentSummarylnformation | Hidden Objects VT_l4 System.Int32
DocumentSummarylnformation | Lines VT_l4 System.Int32
DocumentSummarylnformation | Manager X VT_LPSTR System.String
DocumentSummarylnformation | Multimedia Clips VT_l4 System.Int32
DocumentSummarylnformation | Notes VT_l4 System.Int32
DocumentSummarylnformation | Paragraphs VT_l4 System.Int32
DocumentSummarylnformation | Presentation Format VT_LPSTR System.String
DocumentSummarylnformation | Slides VT_l4 System.Int32
ExtendedSummarylnformation | CreationlLocale X VT_I4 System.Int32
ExtendedSummaryinformation | DocumentID X VT_CLSID System.Guid
ExtendedSummaryinformation | Hardware X VT_BOOL System.Boolean
ExtendedSummaryinformation | Name of Saving Application X VT_LPWSTR System.String
ExtendedSummarylinformation | Status X VT_l4 System.Int32
ExtendedSummarylnformation Username X VT_LPWSTR System.String
MechanicalModeling Material X VT_LPWSTR System.String
Projectinformation Document Number X VT_LPWSTR System.String
Projectinformation Project Name X VT_LPWSTR System.String
Projectinformation Revision X VT_LPWSTR System.String
Summarylnformation Application Name X VT_LPSTR System.String
Summarylnformation Author X VT_LPSTR System.String
Summarylnformation Comments X VT_LPSTR System.String
Summarylnformation Creation Date X VT_FILETIME System.DateTime
Summarylnformation Keywords X VT_LPSTR System.String
Summarylnformation Last Author X VT_LPSTR System.String
Summarylnformation Last Print Date VT_FILETIME System.DateTime
Summarylnformation Last Save Date X VT_FILETIME System.DateTime
Summarylnformation Number of characters VT_l4 System.Int32

147

File Properties [HEE]

Summarylnformation Number of pages VT_l4 System.Int32
Summarylnformation Number of words VT_l4 System.Int32
Summarylnformation Origination Date VT_FILETIME System.DateTime
Summarylnformation Revision Number VT_LPSTR System.String
Summarylnformation Security VT_l4 System.Int32
Summarylnformation Subject X VT_LPSTR System.String
Summarylnformation Template X VT_LPSTR System.String
Summarylnformation Title X VT_LPSTR System.String
Summarylnformation Total Editing Time VT_FILETIME System.DateTime

File Properties [HEE]

SolidEdgeFramework API

You can access the file properties of documents that are open in Solid Edge via the SolidEdgeFramework
API. You will need to add a reference to the Solid Edge Framework Type Library to access this API.

Add Reference

JMET | COM |F‘ru:-jeu:ts Browse || Recent

Companent MName Typelib Yersion | Path e
Solid Edge Assembly Type Library 0 C:\Program F
Solid Edge Conskants Type Library 0 CProgram F
Solid Edge Draft Type Library .0 Z:\Program F
Salid Edage File Properties Ohject Library 0 C:\Program F

Solid Edge Framework Type Library Z:\Program

1

1

1

1

1,
Solid Edge FrameworkSuppaort Type Library 1.0 CProgram F
Solid Edge Geometry Type Librarsy 1.0 Z:\Program F
Solid Edge Install Data Library 1.0 Z:\Program F
Solid Edge Park Tywpe Library 1.0 C:\Program F
Solid Edge Part Wiewer Control 1.0 Z:\Program F
Solid Edge Revision Manager Object Librarw 1.0 Ci\Program F
Solid Edge “Web Parts 1.0 Tvpe Library 1.0 Z:\Program F
SPhoneParser 1.0 Tvpe Library 1.0 C:\Program F
SPMighutoServer 1.0 Z:\Program F
snmServicres. RMClienby? Tene |ibrary 1.0 \Pranram FOY
£ | >

Ok N[Cancel

10-1 - Add Reference

The following console programs demonstrate how to enumerate all available file properties for a given
document using the SolidEdgeFramework API.

Reading File Properties (Visual Basic.NET)

Imports System.Runtime.InteropServices
Module Modulel
Sub Main ()
Dim objApplication As SolidEdgeFramework.Application = Nothing
Dim objDocument As SolidEdgeFramework.SolidEdgeDocument = Nothing
Dim objPropertySets As SolidEdgeFramework.PropertySets = Nothing
Dim objProperties As SolidEdgeFramework.Properties = Nothing
Dim objProperty As SolidEdgeFramework.Property = Nothing
Dim i As Integer
Dim j As Integer
Dim vt As VarEnum
Dim strFormatl As String = "[{0}]"
Dim strFormat2 As String "{0} = {1} ({2})"

Try
' Connect to a running instance of Solid Edge

objApplication = Marshal.GetActiveObject ("SolidEdge.Application™)

File Properties [HE0]

' Get a reference to the active document
objDocument = objApplication.ActiveDocument

' Get a reference to the document's property sets collection
objPropertySets = objDocument.Properties

' Example: Loop through all properties
' Note that indexes are one based
For 1 = 1 To objPropertySets.Count
objProperties = objPropertySets.Item (i)
Console.WritelLine (String.Format (strFormatl, objProperties.Name))
' Note that indexes are one based
For j = 1 To objProperties.Count
objProperty = objProperties.Item(j)
vt = objProperty.Type
Console.WriteLine (String.Format (strFormat2,
objProperty.Name, objProperty.Value, vt))
Next
Console.WriteLine ()
Next

' Example: Read property by name
objProperties = objPropertySets.Item("SummaryInformation™")
objProperty = objProperties.Item("Title")

Catch ex As Exception
Console.WritelLine (ex.Message)
Finally
If Not (objProperty Is Nothing) Then
Marshal.ReleaseComObject (objProperty)
objProperty = Nothing
End If
If Not (objProperties Is Nothing) Then
Marshal.ReleaseComObject (objProperties)
objProperties = Nothing
End If
If Not (objPropertySets Is Nothing) Then
Marshal.ReleaseComObject (objPropertySets)
objPropertySets = Nothing
End If
If Not (objDocument Is Nothing) Then
Marshal.ReleaseComObject (objDocument)
objDocument = Nothing
End If
If Not (objApplication Is Nothing) Then
Marshal.ReleaseComObject (objApplication)
objApplication = Nothing
End If
End Try
End Sub
End Module

Reading File Properties (C#)

using System;
using System.Runtime.InteropServices;

File Properties Kk

namespace MyMacro
{
class Program
{
static void Main(string[] args)
{
SolidEdgeFramework.Application application = null;
SolidEdgeFramework.SolidEdgeDocument document = null;
SolidEdgeFramework.PropertySets propertySets = null;
SolidEdgeFramework.Properties properties = null;
SolidEdgeFramework.Property property = null;
string formatl = "[{0}]";
string format2 = "{0} = {1} ({2})";
VarEnum vt;

try
{
// Connect to a running instance of Solid Edge
application = (SolidEdgeFramework.Application)
Marshal.GetActiveObject ("SolidEdge.Application");

// Get a reference to the active document
document = (SolidEdgeFramework.SolidEdgeDocument)
application.ActiveDocument;

// Get a reference to the document's property sets collection
propertySets = (SolidEdgeFramework.PropertySets)document.Properties;

// Example: Loop through all properties
// Note that indexes are one based
for (int 1 = 1; i <= propertySets.Count; i++)
{
properties = propertySets.Item(i);
Console.WritelLine(string.Format (formatl, properties.Name));
// Note that indexes are one based
for (int j = 1; j <= properties.Count; j++)
{
property = properties.Item(j);
vt = (VarEnum)property.Type;

Console.WritelLine (
string.Format (
format2, property.Name, property.get_Value(), vt));
}
Console.WriteLine () ;

}

// Example: Read property by name
properties = propertySets.Item("SummaryInformation");
property = properties.Item("Title");
}
catch (System.Exception ex)
{
Console.WritelLine (ex.Message) ;
}
finally
{

File Properties

if (property != null)

{
Marshal.ReleaseComObject (property) ;
property = null;

}

if (properties != null)

{
Marshal.ReleaseComObject (properties) ;
properties = null;

}

if (propertySets != null)

{
Marshal .ReleaseComObject (propertySets) ;
propertySets = null;

}

if (document != null)

{
Marshal.ReleaseComObject (document) ;
document = null;

if (application != null)

Marshal.ReleaseComObject (application) ;
application = null;

The following console programs demonstrate how to add your own custom properties to a given
document using the SolidEdgeFramework API.

Working with Custom Properties (Visual Basic.NET)

Imports System.Runtime.InteropServices
Module Modulel
Sub Main ()

Dim objApplication As SolidEdgeFramework.Application = Nothing
Dim objDocument As SolidEdgeFramework.SolidEdgeDocument = Nothing
Dim objPropertySets As SolidEdgeFramework.PropertySets = Nothing
Dim objProperties As SolidEdgeFramework.Properties = Nothing
Dim objProperty As SolidEdgeFramework.Property = Nothing

Try
' Connect to a running instance of Solid Edge

objApplication = Marshal.GetActiveObject ("SolidEdge.Application™")

' Get a reference to the active document

objDocument = objApplication.ActiveDocument

' Get a reference to the document's property set collection

objPropertySets = objDocument.Properties

' Get a reference to the Custom properties

152

objProperties = objPropertySets.Item("Custom")

' Add custom properties

objProperty = objProperties.Add("My String", "Hello")
objProperty = objProperties.Add("My Integer", 123)
(
(

objProperty objProperties.Add ("My Date", DateTime.Now)
objProperty = objProperties.Add("My Boolean", True)
Catch ex As Exception
Console.WritelLine (ex.Message)
Finally
If Not (objProperty Is Nothing) Then
Marshal.ReleaseComObject (objProperty)
objProperty = Nothing
End If
If Not (objProperties Is Nothing) Then
Marshal .ReleaseComObject (objProperties)
objProperties = Nothing
End If
If Not (objPropertySets Is Nothing) Then
Marshal .ReleaseComObject (objPropertySets)
objPropertySets = Nothing
End If
If Not (objDocument Is Nothing) Then
Marshal.ReleaseComObject (objDocument)
objDocument = Nothing
End If
If Not (objApplication Is Nothing) Then
Marshal.ReleaseComObject (objApplication)
objApplication = Nothing
End If
End Try
End Sub
End Module

Working with Custom Properties (C#)

using System;
using System.Runtime.InteropServices;

namespace MyMacro

{

class Program

{

static void Main(string[] args)

{
SolidEdgeFramework.Application application = null;

SolidEdgeFramework.SolidEdgeDocument document = null;
SolidEdgeFramework.PropertySets propertySets = null;
SolidEdgeFramework.Properties properties = null;

SolidEdgeFramework.Property property = null;

try
{
// Connect to a running instance of Solid Edge
application = (SolidEdgeFramework.Application)
Marshal.GetActiveObject ("SolidEdge.Application");

File Properties

153

File Properties Ry

// Get a reference to the active document
document = (SolidEdgeFramework.SolidEdgeDocument)
application.ActiveDocument;

// Get a reference to the document's property set collection
propertySets = (SolidEdgeFramework.PropertySets)document.Properties;

// Get a reference to the Custom properties
properties = propertySets.Item("Custom");

// Add custom properties

property = properties.Add
property properties.Add
property properties.Add
property = properties.Add

"My String", "Hello");
"My Integer", 123);

"My Date", DateTime.Now) ;
"My Boolean", true);

—~ e~~~

}

catch (System.Exception ex)

{

Console.WritelLine (ex.Message) ;

}
finally

{
if (property != null)
{
Marshal .ReleaseComObject (property) ;

property = null;
}

if (properties != null)

Marshal .ReleaseComObject (properties) ;
properties = null;

if (propertySets != null)

Marshal .ReleaseComObject (propertySets) ;
propertySets = null;

if (document != null)

Marshal .ReleaseComObject (document) ;
document = null;

if (application != null)

Marshal .ReleaseComObject (application) ;
application = null;

File Properties FHEL

SolidEdgeFileProperties API

The SolidEdgeFileProperties API is a lightweight APl used when you need to access file properties of
documents outside of Solid Edge.

You will need to add a reference to the Solid Edge File Properties Object Library to access this API.

Add Reference

JMET | COM | Projects | Browse || Recent
Companent MName Typelib Yersion | Path e
Solid Edge Assembly Type Library 1.0 C:\Program F
Solid Edge Conskants Type Library 1.0 CProgram F
Solid Edge Draft Type Library 1.0 Z:\Program F
Solid Edge File Properties Object Library 1.0 C:\Prograni
Solid Edge Framework Type Library 1.0 C:\Program F
Solid Edge FrameworkSuppaort Type Library 1.0 CProgram F
Solid Edge Geometry Type Librarsy 1.0 Z:\Program F
Solid Edge Install Data Library 1.0 Z:\Program F
Solid Edge Park Tywpe Library 1.0 C:\Program F
Solid Edge Part Wiewer Control 1.0 Z:\Program F
Solid Edge Revision Manager Object Librarw 1.0 Ci\Program F
Solid Edge “Web Parts 1.0 Tvpe Library 1.0 Z:\Program F
SPhoneParser 1.0 Tvpe Library 1.0 C:\Program F
SPMighutoServer 1.0 Z:\Program F
snmServicres. RMClienby? Tene |ibrary 1.0 \Pranram FOY
< | >
[Ok EEJ [Cancel

10-2 - Add Reference

The following console programs demonstrate how to enumerate all available file properties for a given
document using the SolidEdgeFileProperties API.

Reading File Properties (Visual Basic.NET)

Imports System.Runtime.InteropServices
Module Modulel
Sub Main ()
Dim objPropertySets As SolidEdgeFileProperties.PropertySets = Nothing
Dim objProperties As SolidEdgeFileProperties.Properties = Nothing
Dim objProperty As SolidEdgeFileProperties.Property = Nothing
Dim i As Integer
Dim j As Integer
Dim strFormatl As String
Dim strFormat2 As String

"[{O}J"
"(0}) = (1}"

Try
' Create new instance of the PropertySets object
objPropertySets = New SolidEdgeFileProperties.PropertySets

Open a file

File Properties (3]

objPropertySets.Open("C:\Partl.par", True)

' Example: Loop through all properties

Note that indexes are zero based

For 1 = 0 To objPropertySets.Count - 1
objProperties = objPropertySets.Item (i)
Console.WriteLine (String.Format (strFormatl,
' Note that indexes are zero based
For j = 0 To objProperties.Count - 1

objProperty = objProperties.Item(7)

' .Value property may throw an exception
Try

objProperties.Name))

Console.WritelLine (String.Format (strFormat2,
objProperty.Name, objProperty.Value))
Catch ex As Exception
Console.WriteLine (String.Format (strFormat2,

objProperty.Name, " (ERROR)"))
End Try

Next

Console.WriteLine ()
Next

' Get a reference to the SummaryInformation properties

objProperties = objPropertySets.Item("SummaryInformation™")
' Get a reference to the Title property by name
objProperty = objProperties.Item("Title")
Catch ex As Exception
Console.WritelLine (ex.Message)
Finally
If Not (objProperty Is Nothing) Then
Marshal.ReleaseComObject (objProperty)
objProperty = Nothing
End If
If Not (objProperties Is Nothing) Then
Marshal .ReleaseComObject (objProperties)
objProperties = Nothing
End If
If Not (objPropertySets Is Nothing) Then
' Close underlying property storage
objPropertySets.Close ()
Marshal.ReleaseComObject (objPropertySets)
objPropertySets = Nothing
End If
End Try
End Sub
End Module

Reading File Properties (C#)
using System;
using System.Runtime.InteropServices;

namespace MyMacro
{

class Program

static void Main(stringl[]

{

SolidEdgeFileProperties
SolidEdgeFileProperties
SolidEdgeFileProperties
string formatl
string format2 = "{0} =

try
{

File Properties [NV

args)

.PropertySets propertySets = null;
.Properties properties = null;
.Property property = null;
"[{O}]l.

|l
4

{115

// Create new instance of the PropertySets object
propertySets = new SolidEdgeFileProperties.PropertySets();

// Open a file

propertySets.Open (@"C:

\Partl.par", true);

// Example: Loop through all properties
// Note that indexes are zero based
for (int i = 0; i < propertySets.Count; i++)

{

properties = (SolidEdgeFileProperties.Properties)propertySets([i];
// Note that indexes are zero based

for (int j = 0; j <
{

properties.Count; J++)

property = (SolidEdgeFileProperties.Property)properties[j];

try
{

Console.WriteLine (
string.Format (

}

catch

{

format2, property.Name, property.Value));

Console.WriteLine (
string.Format (

}

format2, property.Name, "ERROR"));

// Get a reference to the SummaryInformation properties
properties = (SolidEdgeFileProperties.Properties)
propertySets["SummaryInformation"];

// Get a reference to the Title property by name
property = (SolidEdgeFileProperties.Property)

properties["Title"];

}

catch (System.Exception ex)

{

Console.WriteLine (ex.Message) ;

}
finally

{
if (property != null)
{

File Properties UL

Marshal .ReleaseComObject (property) ;
property = null;

}

if (properties != null)

{
Marshal .ReleaseComObject (properties) ;
properties = null;

}

if (propertySets != null)

{
propertySets.Close () ;
Marshal .ReleaseComObject (propertySets) ;
propertySets = null;

The following console programs demonstrate how to add your own custom properties to a given
document using the SolidEdgeFileProperties API.

Working with Custom Properties (Visual Basic.NET)

Imports System.Runtime.InteropServices
Module Modulel
Sub Main ()
Dim objPropertySets As SolidEdgeFileProperties.PropertySets = Nothing
Dim objProperties As SolidEdgeFileProperties.Properties = Nothing
Dim objProperty As SolidEdgeFileProperties.Property = Nothing

Try
' Create new instance of the PropertySets object
objPropertySets = New SolidEdgeFileProperties.PropertySets

' Open a file
objPropertySets.Open ("C:\Partl.par", False)

' Get reference to Custom Property Set
objProperties = objPropertySets.Item("Custom")

' Add custom file properties

objProperty = objProperties.Add("My String", "Hello")
objProperty objProperties.Add ("My Integer", 123)
objProperty objProperties.Add ("My Date", DateTime.Now)
objProperty = objProperties.Add("My Boolean", True)

' Delete last custom property
objProperty.Delete ()

' Save changes
objPropertySets.Save ()
Catch ex As Exception
Console.WritelLine (ex.Message)
Finally

If Not (objProperty Is Nothing) Then
Marshal.ReleaseComObject (objProperty)
objProperty = Nothing

End If

If Not (objProperties Is Nothing) Then
Marshal.ReleaseComObject (objProperties)
objProperties = Nothing

End If

If Not (objPropertySets Is Nothing) Then
' Close underlying property storage
objPropertySets.Close ()
Marshal.ReleaseComObject (objPropertySets)
objPropertySets = Nothing

End If

End Try
End Sub
End Module

Working with Custom Properties (C#)

using System;
using System.Runtime.InteropServices;

namespace MyMacro

{

class Program
{
static void Main(string[] args)
{
SolidEdgeFileProperties.PropertySets propertySets = null;
SolidEdgeFileProperties.Properties properties = null;
SolidEdgeFileProperties.Property property = null;

try
{

// Create new instance of the PropertySets object
propertySets = new SolidEdgeFileProperties.PropertySets();

// Open a file
propertySets.Open(@"C:\Partl.par", false);

// Get reference to Custom Property Set
properties = (SolidEdgeFileProperties.Properties)

propertySets["Custom"];

// Add custom file properties

property = (SolidEdgeFileProperties.Property)
properties.Add ("My String", "Hello");

property = (SolidEdgeFileProperties.Property)
properties.Add ("My Integer", 123);

property = (SolidEdgeFileProperties.Property)
properties.Add ("My Date", DateTime.Now) ;

property = (SolidEdgeFileProperties.Property)

properties.Add ("My Boolean", true);

// Delete last custom property
property.Delete();

File Properties

159

File Properties [HEE0)

// Save changes
propertySets.Save () ;

}
catch (System.Exception ex)

{

Console.WriteLine (ex.Message) ;

}
finally

{
if (property != null)

{
Marshal.ReleaseComObject (property) ;

property = null;
}

if (properties != null)

Marshal.ReleaseComObject (properties) ;
properties = null;

if (propertySets != null)

Marshal .ReleaseComObject (propertySets) ;
propertySets = null;

RevisionManager API
The RevisionManager API is another lightweight APl used when you need to access file properties of

documents outside of Solid Edge.

You will need to add a reference to the Solid Edge Revision Manager Object Library to access this API.

File Properties UKL

Add Reference

JMET | COM | Projects | Browse || Recent
Component Mame Typelib Yersion = Path o
Solid Edge assembly Type Library 1.0 Z:\Program F
Solid Edge Constants Type Library 1.0 Z:\Program F
Solid Edge Draft Tvpe Library 1.0 Z:\Program F
Solid Edge File Properties Object Library 1.0 C:\Program F
Solid Edge Framework Type Library 1.0 Z:\Program F
Solid Edge FrameworkSupport Type Library 1.0 Z:\Program F
Solid Edge Geometry Type Libraty 1.0 Z:\Program F
Solid Edge Install Data Library 1.0 C:\Program F
Solid Edge Park Tyvpe Library 1.0 CProgram F
Solid Edge Part Wiewer Control 1.0 Z:\Program F
Solid Edge Revision Manager Object Library 1.0 C!\Progran HE
Solid Edge “Web Parts 1.0 Tvpe Library 1.0 C:\Program F
SPhoneParser 1.0 Type Library 1.0 CProgram F
SPMigAutoServer 1.0 Z:\Program F
srrnServicres. NRMClienEY? Teme |ikrary 1.0 C\Prankam FOY
< | >
O, EEJ [Cancel

10-3 - Add Reference

The following console programs demonstrate how to enumerate all available file properties for a given
document using the RevisionManager API.

Reading File Properties (Visual Basic.NET)

Imports System.Runtime.InteropServices
Module Modulel
Sub Main ()
Dim objApplication As RevisionManager.Application = Nothing
Dim objPropertySets As RevisionManager.PropertySets = Nothing
Dim objProperties As RevisionManager.Properties = Nothing
Dim objProperty As RevisionManager.Property = Nothing
Dim i As Integer
Dim j As Integer
Dim strFormatl As String "[{O}]"
Dim strFormat2 As String = "{0} = {1}"

Try
' Create new instance of the Revision Manager Application object
objApplication = New RevisionManager.Application
' Open a file

objApplication.Open ("C:\Partl.par")

' Get a reference to the property sets collection
objPropertySets = objApplication.PropertySets

Example: Loop through all properties.

File Properties FHES

' Note that indexes are zero based

For 1 = 0 To objPropertySets.Count - 1
objProperties = objPropertySets.Item(1i)
Console.WritelLine (String.Format (strFormatl, objProperties.Name))
' Note that indexes are zero based
For j = 0 To objProperties.Count - 1
objProperty = objProperties.Item(j)
' .Value property may throw an exception
Try
Console.WriteLine (String.Format (strFormat2,
objProperty.Name, objProperty.Value))
Catch ex As Exception
Console.WritelLine (String.Format (strFormat2,
objProperty.Name, " (ERROR)"))
End Try
Next
Console.WriteLine ()
Next
' Get a reference to the SummaryInformation properties
objProperties = objPropertySets.Item("SummaryInformation")
' Get a reference to the Title property by name
objProperty = objProperties.Item("Title")

Catch ex As Exception
Console.WritelLine (ex.Message)
Finally
If Not (objProperty Is Nothing) Then
Marshal.ReleaseComObject (objProperty)
objProperty = Nothing
End If
If Not (objProperties Is Nothing) Then
Marshal.ReleaseComObject (objProperties)
objProperties = Nothing
End If
If Not (objPropertySets Is Nothing) Then
Marshal.ReleaseComObject (objPropertySets)
objPropertySets = Nothing
End If
If Not (objApplication Is Nothing) Then
objApplication.Quit ()
Marshal.ReleaseComObject (objApplication)
objApplication = Nothing
End If
End Try
End Sub
End Module

Reading File Properties (C#)

using System;

using System.Reflection;

using System.Runtime.InteropServices;

namespace MyMacro

{

File Properties BHESE]

class Program
{
static void Main(string[] args)
{
RevisionManager.Application application = null;
RevisionManager.PropertySets propertySets = null;
RevisionManager.Properties properties = null;
RevisionManager.Property property = null;
string strFormatl "[{O}I";
string strFormat2 = "{0} = {1}";

try

{
// Create new instance of the Revision Manager Application object
application = new RevisionManager.Application();

// Open a file
propertySets.Open(@"C:\Partl.par", true);

// Get a reference to the property sets collection
propertySets = (RevisionManager.PropertySets)
application.PropertySets;

// Example: Loop through all properties.

// Note that indexes are zero based

for (int i = 0; i < propertySets.Count; i++)

{
properties = (RevisionManager.Properties)propertySets.get_TItem(i);
Console.WritelLine(String.Format (strFormatl, properties.Name));
// Note that indexes are zero based

for (int j = 0; j < properties.Count; j++)
{
property = (RevisionManager.Property)
properties.get_Item(j);
try

{
Console.WriteLine (
String.Format (strFormat2, property.Name, property.Value));
}
catch
{
Console.WriteLine (
String.Format (strFormat2, property.Name, " (ERROR)"));

}

// Get a reference to the SummaryInformation properties
properties = (RevisionManager.Properties)
propertySets.get_Item("SummaryInformation") ;

// Get a reference to the Title property by name

property = (RevisionManager.Property)properties.get_TItem("Title");
}
catch (System.Exception ex)
{

Console.WriteLine (ex.Message) ;

}

finally

{

if (property != null)

{
Marshal .ReleaseComObject (property) ;
property = null;

}

if (properties != null)

Marshal .ReleaseComObject (properties) ;
properties = null;

if (propertySets != null)

Marshal.ReleaseComObject (propertySets) ;
propertySets = null;

}

if (application != null)

{
application.Quit () ;
Marshal .ReleaseComObject (application) ;
application = null;

File Properties [HEE:

The following console programs demonstrate how to add your own custom properties to a given

document using the RevisionManager API.

Working with Custom Properties (Visual Basic.NET)

Imports

System.Runtime.InteropServices

Module Modulel
Sub Main ()

Dim objApplication As RevisionManager.Application
Dim objPropertySets As RevisionManager.PropertySets
Dim objProperties As RevisionManager.Properties

Try

objApplication = New RevisionManager.Application

objPropertySets.Open("C:\Partl.par",

objProperties = objPropertySets.Item("Custom")

Create new instance of the Revision Manager Application object

Open a file

Get a reference to the property sets collection
objPropertySets = objApplication.PropertySets

Get reference to Custom property set

Add custom file properties

False)

File Properties BHESE

objProperties.Add
objProperties.Add
objProperties.Add
objProperties.Add

"My String", "Hello")
"My Integer", 123)

"My Date", DateTime.Now)
"My Boolean", True)

o~~~ —~

' Save changes

objPropertySets.Save ()
Catch ex As Exception
Console.WritelLine (ex.Message)
Finally
If Not (objProperties Is Nothing) Then
Marshal .ReleaseComObject (objProperties)
objProperties = Nothing
End If
If Not (objPropertySets Is Nothing)
Marshal.ReleaseComObject (objPropertySets)
objPropertySets = Nothing
End If
If Not (objApplication Is Nothing) Then
objApplication.Quit ()
Marshal.ReleaseComObject (objApplication)
objApplication = Nothing
End If

End Try
End Sub
End Module

Working with Custom Properties (C#)
using System;

using System.Reflection;

using System.Runtime.InteropServices;

namespace MyMacro

{

class Program

{
static void Main(string[] args)

{

RevisionManager.Application application = null;

RevisionManager.PropertySets propertySets = null;
RevisionManager.Properties properties = null;
try

{
// Create new instance of the Revision Manager Application object
application = new RevisionManager.Application();

// Open a file
propertySets.Open(@"C:\Partl.par", false);

// Get a reference to the property sets collection
propertySets = (RevisionManager.PropertySets)

application.PropertySets;

// Get reference to Custom property set

File Properties [HESS)

properties = (RevisionManager.Properties)
propertySets.get_TItem("Custom") ;

// Add custom file properties
properties.Add ("My String", "Hello");
properties.Add ("My Integer", 123);
properties.Add ("My Date", DateTime.Now) ;
properties.Add ("My Boolean", true);

// Save changes
propertySets.Save() ;
}
catch (System.Exception ex)
{
Console.WriteLine (ex.Message) ;
}
finally
{
if (properties != null)
{
Marshal .ReleaseComObject (properties) ;
properties = null;
}
if (propertySets != null)
{
Marshal .ReleaseComObject (propertySets) ;
propertySets = null;
}
if (application != null)
{
application.Quit () ;
Marshal .ReleaseComObject (application) ;
application = null;

Installation Information s/

Chapter 11 - Installation Information

The file SEInstallData.dll contains the SEInstallData object. This library is delivered during Solid Edge
setup, but can be used independently of Solid Edge. Use it to obtain information about the Solid Edge
installation, including major and minor version numbers, major and minor Parasolid version numbers,
installation path, and language ID.

You will need to add a reference to the Solid Edge Install Data Library to access this class.

Add Reference

JMET | COM | Projects | Browse || Recent
Companent MName Typelib Yersion | Path e
Solid Edge Assembly Type Library 1.0 C:\Program F
Solid Edge Conskants Type Library 1.0 CProgram F
Solid Edge Draft Type Library 1.0 Z:\Program F
Salid Edage File Properties Ohject Library 1.0 C:\Program F
Solid Edge Framework Type Library 1.0 C:\Program F
Solid Edge FrameworkSuppaort Type Library 1.0 CProgram F
Solid Edge Geometry Type Librarsy 1.0 Z:\Program F
Solid Edge Install Data Library 1.0 Z:'\Prograrm
Solid Edge Park Tywpe Library 1.0 C:\Program F
Solid Edge Part Wiewer Control 1.0 Z:\Program F
Solid Edge Revision Manager Object Librarw 1.0 Ci\Program F
Solid Edge “Web Parts 1.0 Tvpe Library 1.0 Z:\Program F
SPhoneParser 1.0 Tvpe Library 1.0 C:\Program F
SPMighutoServer 1.0 Z:\Program F
snmServicres. RMClienby? Tene |ibrary 1.0 \Pranram FOY
< | >
[Ok N [Cancel

11-1 - Add Reference

The following console programs demonstrate how to create an instance of the SEInstallData class. If the
creation is successful, the program accesses the properties that describe the Solid Edge version installed
on the client system, and accesses the property describing where Solid Edge is installed on the client
system.

Extracting Installation Information (Visual Basic .NET)
Imports System.Globalization

Imports System.IO

Imports System.Runtime.InteropServices

Module Modulel

Sub Main ()
Dim objInstallData As SEInstallDatalLib.SEInstallData = Nothing
Dim iBuildNumber As Integer
Dim objInstallFolder As DirectoryInfo

Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim

Try

Installation Information

objCulture As CulturelInfo
iMajorVersion As Integer
iMinorVersion As Integer
iParasolidMajorVersion As Integer
iParasolidMinorVersion As Integer
objParasolidVersion As System.Version
iServicePackVersion As Integer
objVersion As System.Version

Create a new instance of the SEInstallData object

objInstallData = New SEInstallDatalLib.SEInstallData()

Get the build number

iBuildNumber = objInstallData.GetBuildNumber ()

Create a new instance of DirectoryInfo using GetInstalledPath()

objInstallFolder = New DirectoryInfo(objInstallData.GetInstalledPath())

Create a new instance of CulturelInfo using GetLanguagelID ()

objCulture = New CulturelInfo(objInstallData.GetLanguagelID())

Get major version

iMajorVersion = objInstallData.GetMajorVersion()

Get minor version

iMinorVersion = objInstallData.GetMinorVersion()

Get parasolid major version

iParasolidMajorVersion = objInstallData.GetParasolidMajorVersion ()

Get parasolid minor version

iParasolidMinorVersion = objInstallData.GetParasolidMinorVersion ()

Create a new instance of Version using GetParasolidVersion()

objParasolidVersion = New Version(objInstallData.GetParasolidVersion())

Get service pack version

iServicePackVersion = objInstallData.GetServicePackVersion ()

Create a new instance of Version using GetVersion()

objVersion = New Version(objInstallData.GetVersion())

Write information to screen

Console.WriteLine (String.Format (

"Parasolid Version - {0}", objParasolidVersion.ToString()))

Console.WriteLine (String.Format (

"Solid Edge Version - {0}", objVersion.ToString()))

Console.WritelLine (String.Format (

"Install Path - {0}", objInstallFolder.FullName))

Catch ex As Exception
Console.WritelLine (ex.Message)
Finally
If Not (objInstallData Is Nothing) Then

Marshal.ReleaseComObject (objInstallData)
objInstallData = Nothing

End If

168

Installation Information

End Try
End Sub
End Module

Extracting Installation Information (C#)
using System;

using System.Globalization;

using System.IOj;

using System.Runtime.InteropServices;

namespace MyMacro
{
class Program
{
static void Main(string[] args)
{
SEInstallDatalLib.SEInstallData installData = null;
int builderNumber = 0;
DirectoryInfo installFolder;
CulturelInfo culturelnfo;
int majorVersion = 0;
int minorVersion = 0;
int parasolidMajorVersion =
int parasolidMinorVersion = 0;
Version parasolidVersion;
int servicePackVersion = 0;
Version version;

|
o
~

try

{
// Create a new instance of the SEInstallData object
installData = new SEInstallDatalib.SEInstallData();

// Get the build number
builderNumber = installData.GetBuildNumber () ;

// Create a new instance of DirectoryInfo using GetInstalledPath ()
installFolder = new DirectoryInfo(installData.GetInstalledPath());

// Create a new instance of CultureInfo using GetLanguagelID ()
cultureInfo = new CulturelInfo(installData.GetLanguagelID())

// Get major version
majorVersion = installData.GetMajorVersion () ;

// Get minor version
minorVersion = installData.GetMinorVersion() ;

// Get parasolid major version
parasolidMajorVersion = installData.GetParasolidMajorVersion();

// Get parasolid minor version
parasolidMinorVersion = installData.GetParasolidMinorVersion();

// Create a new instance of Version using GetParasolidVersion ()
parasolidVersion = new Version(installData.GetParasolidVersion());

169

Installation Information /o]

// Get service pack version
servicePackVersion = installData.GetServicePackVersion();

// Create a new instance of Version using GetVersion()
version = new Version(installData.GetVersion());

// Write information to screen
Console.WritelLine(string.Format (

"Parasolid Version - {0}", parasolidVersion.ToString()));
Console.WriteLine(string.Format (
"Solid Edge Version - {0}", version.ToString()));

Console.WriteLine(string.Format (
"Install Path - {0}", installFolder.FullName)) ;
}
catch (System.Exception ex)
{
Console.WritelLine (ex.Message) ;
}
finally
{
if (installData != null)
{
Marshal.ReleaseComObject (installData) ;
installData = null;

Addins Ak

Chapter 12 - Addins

This chapter will cover the basics of creating a Solid Edge addin in Visual Basic .NET. Since there is so
much information to put into a single chapter, | will not be able to cover all that is possible when
creating an addin.

Overview

The Solid Edge API provides an easy-to-use set of interfaces that enable programmers to fully integrate
custom commands with Solid Edge. These custom programs are commonly referred to as addins.
Specifically, Solid Edge defines an addin as a dynamically linked library (DLL) containing a COM-based
object that implements the ISolidEdgeAddIn interface. More generally, an add-in is a COM object that is
used to provide commands or other value to Solid Edge.

The following interfaces are available to the add-in programmer:

¢ ISolidEdgeAddIn—The first interface implemented by an add-in. Provides the initial means of
communicating with Solid Edge.

e ISEAddInEvents and DISEAddInEvents—Provides command-level communication between the
add-in and Solid Edge.

In addition, several Solid Edge interfaces are available once the add-in is connected to Solid Edge. These
include ISEAddIn, ISECommand/DISECommand, ISECommandEvents/DISECommandEvents,
ISEMouse/DISEMouse, ISEMouseEvents/DISEMouseEvents, ISEWindowEvents/DISEWindowEvents, and
ISolidEdgeBar.

Requirements
A Solid Edge add-in has the following requirements:

® The add-in must be a self-registering ActiveX DLL. You must deliver a registry script that
registers the DLL and adds Solid Edge-specific information to the system registry.

e The add-in must expose a COM-creatable class from the DLL in the registry.

® The add-in must register the CATID_SolidEdgeAddin as an Implemented Category in its registry
setting so that Solid Edge can identify it as an add-in.

e The add-in must implement the ISolidEdgeAddIn interface. The definition of this interface is
delivered with the Solid Edge SDK (addins.h). The add-in can implement any additional
interfaces, but I1SolidEdgeAddIn is the interface that Solid Edge looks for.

e During the OnConnect call (made by Solid Edge on the add-in's ISolidEdgeAddIn interface), the
add-in can add commands to one or more Solid Edge environments.

e |f a graphical user interface (buttons or toolbars, for example) is associated with the add-in, then
the add-in must provide a GUI version to be stored by Solid Edge. If the GUI version changes the
next time the add-in is loaded, then Solid Edge will purge the old GUI and re-create it based on
the calls to AddCommandBarButton with the OnConnectToEnvironment method. A GUl is an
optional component of an add-in; some add-ins, for example, simply monitor Solid Edge events
and perform actions based on those activities.

Addins @i

ISolidEdgeAddIn Interface

The I1SolidEdgeAddIn interface is the first interface that is implemented by an add-in and provides the
initial means of communication with Solid Edge. It allows for connection to and disconnection from an
add-in. The implementation of this interface is what identifies a COM object as being a Solid Edge add-
in.

OnConnection

Solid Edge passes in a pointer to the dispatch interface of the Solid Edge application that is attempting
to connect to the add-in. The add-in uses this pointer to make any necessary calls to the application to
connect to Solid Edge event sinks, or to otherwise communicate with Solid Edge to perform whatever
tasks the add-in needs when first starting up.

Solid Edge passes in a connect mode that indicates what caused Solid Edge to connect to the add-in.
Current modes are as follows:

e seConnectAtStartUp - Loading the add-in at startup.

® seConnectByUser - Loading the add-in at user's request.

e seConnectExternally - Loading the add-in due to an external (programmatic) request. Solid
Edge also passes in a dispatch interface of a Solid Edge Add-in object that

Solid Edge also passes in a dispatch interface of a Solid Edge Add-in object that provides another channel
of communication between the add-in and Solid Edge. An equivalent v-table form of this interface can
be obtained by querying the input Addin's dispatch interface for the ISEAddIn interface (also described
in addins.h).

In general, the add-in needs to do very little needs when OnConnection is called. Here are a few basic
steps that an add-in may want to perform during connection.

1. Connect to any Solid Edge application event sets the add-in plans on using by providing the
appropriate sinks to the application object.

2. Connect to the Solid Edge Add-in object's event set if the add-in plans to add any commands to
any environments.

3. Set the GUI version property of the Solid Edge Add-in object.

OnConnectToEnvironment

Solid Edge passes in the category identifier of the environment as a string. If the addin is registered as
supporting multiple environments, the add-in can use the string to determine which environment to
which it is being asked to connect. Solid Edge passes in the dispatch interface of the environment. Solid
Edge passes in the bFirstTime parameter to specify that a Solid Edge environment is connecting to the
add-in for the first time. When connecting for the first time, the add-in, if necessary, should add any
needed user interface elements (for example, buttons). On exiting, Solid Edge will save any such
buttons so they can be restored during the next session.

Addins]

To connect to a Solid Edge environment, the add-in will perform the following steps in its
OnConnectToEnvironment:

1. The add-in should always call the SetAddIninfo method of the add-in interface passed to it
during OnConnection if it provides any command bars or command bar buttons in the
environment.

2. The add-in uses the bFirstTime parameter to determine if it is the first time the add-in has been
loaded into the environment by checking to see if it is VARIANT_TRUE. If it is, the add-in should
add any command bar buttons it needs to carry out its commands by calling the add-in
interface's AddCommandBarButton method. If the add-in is not disconnected, and its GUI
version has not changed the next time Solid Edge loads the add-in, then Solid Edge will set the
parameter to VARIANT_FALSE because Solid Edge will save the data provided it by the add-in
the last time the parameter was VARIANT_TRUE. Note that if the add-in's OnDisconnect
function is called with a disconnect mode different from seDisconnectAtShutdown, this
parameter will be VARIANT_TRUE the next time Solid Edge calls OnConnection. This happens
because when an add-in is disconnected by the user or programatically, Solid Edge will purge all
GUI modifications made by the add-in from all environments.

3. Add any commands not included in any of the calls to SetAddIninfo by calling the application's
AddCommand method. Generally this method is used when a command is being added to the
menu but not any command bar. Note Command bars are persisted by Solid Edge when exiting.
When an environment is first loaded, connection to the add-in is performed before the
environment's command bars are loaded. This allows an add-in to call SetAddIninfo to supply
any glyphs needed by any buttons that were previously saved by Solid Edge. Add-ins cannot
assume the existence of any particular environment, until this function is called with that
environment's catid. Any calls with a catid for an environment that does not yet exist will be
rejected.

OnDisconnection
Solid Edge passes in a disconnect mode that indicates what caused Solid Edge to disconnect to the add-
in.

Current modes are as follows:

e SeDisconnectAtShutDown - Unloading at shutdown.
e SeDisconnectByUser - Unloading the add-in due to a user request.
e SeDisconnectExternally - Unloading the add-in due to an external (programmatic) request.

To disconnect, the add-in should do the following:

Disconnect from any Solid Edge event sets it may have connected to.
Disconnect from the Add-in event set (if connected).
Release any other objects or interfaces the add-in may have obtained from the application.

el

Close any storage and/or streams it may have opened in the application's document.

Addins

5. Perform any other cleanup such as freeing any resources it may have allocated.

Your first addin

Create a new Visual Basic .NET project

To create a Solid Edge addin using Visual Basic .NET, you need to start with the Class Library template
offered by Visual Studio. This will produce a .NET dynamic link library that you can "COM Enable" which
will allow Solid Edge to find and load your addin.

New Project

Praject bypes: Templates: || E
Misual Cat
[=J- Other Languages

Yisual Basic v = v
['B ‘E =B =2'e
Yisual C++ ; 15 = Er] Em

Other Project Types Windows Class Library Console windows Device
Application Application Control Library Application

ASP.MET Web ASP.MET Web
Application Service Ap...

¥isual Studio installed templates]

My Templates

[

A project for creating a vE class library (.dll) |

Marme: | MyaddIn |
Location: | Ci\Temp v| [Erowse, .,]
Solution Mame: | My AddIn | Create directory For solution

[]add to Source Cantrol

QK @[Cancel

12-1 - Create new Class Library

Addins A

The default Class Library templates name the create you a single class file named Class1.vb. You can

rename this to anything you'd like. i.e. AddIn.vb. Itis fairly important to get your naming set early as
changes later will not be as easy as they are at this point.

Solution Explorer - '_:-I:IN".iI:In MyAddIn.,, » 0 X

22l [E s
(o Solution MyaddIn' (1 project)
= 2 Myaddin

=d| My Project

j Open
Qpen with...
[Z] wiew Code
c%_ Wiew Class Diagram

Exclude From Project

4 Cut

53 Copy
X Delete
| Rename

Properties

L“:‘f~;| Solution Explorer _.“%jlndex

12-2 - Rename Classl.vb to Addin.vb

Add reference to SolidEdgeFramework

Similar to a macro project, you need to add a reference to the Solid Edge Framework Type Library. This
process will generate an Interop Assembly that your addin will depend upon. It is important to
remember that any Interop Assembly that you generate will need to be deployed with your addin.

@9 MyAddIn - Microsoft Visual Studio

Addins

[Solution MyAddIn' {1 project)
= 26 MyaddIn

[=d| My Project

‘E‘I AddIn.vb

@Snlution Explorer iu}Index

File Edit View | Project | Buld Debug Data Tools window Communiby Help
- i 5 [l 5] Add Windows Farm... = b Debug - Ay CPU
1 Gl #Add User Contral... =
e I, LT | R—.a Ax Iﬂ @ 5} .x‘i
—] Add Component. ..
){j ~ addIn.yb
— | @] Add Module..
g_ Ernplky
E_ D Public “% Add Class, ., Shift+alt+C ~
L] AddMewItem... Ctrl+shift+a =
End Clsg - i :
-0 “2Tn] add Existing Teem... Shift+al+a
Exclude From Project
éﬁ Showa Al Files
| Add Reference. .. [~ |
Add Web Reference. ..
Sek as StartUp Project
MyaddIn Properties. ..
bl
< i | >
I_‘B Errar Listlﬂ'@ Find Svnibal Resulks i% Inde:x Results For Missing, Yalue Field]
Ready

12-3 - Add Reference

Addins b/

At a minimum, you must add a reference to the Solid Edge Framework Type Library. Depending on
functionality that your addin will offer, you may need to add a reference to other Solid Edge type
libraries.

Add Reference

JET | COM | Frojects | Browse || Recent
Component Mame Typelib Yersion = Path A
Solid Edge Assembly Tywpe Library 1.0 Z:\Program F
Salid Edge Constants Type Library 1.0 C:\Program F
Solid Edge Draft Tvpe Library 1.0 C:\Program F
Solid Edge File Properties Object Library 1.0 C\Program F
Solid Edge Framework Tywpe Library 1.0 :\Program
Saolid Edae FrameworkSuppart Type Library 1.0 C:\Program F
Solid Edge Geometry Type Libraty 1.0 C:\Program F
Solid Edge Install Data Library 1.0 Z:\Program F
Solid Edge Part Twpe Library 1.0 Z:\Program F
Solid Edge Park Wigwer Conkrol 1.0 Z:\Program F
Solid Edge Revision Manager Object Library 1.0 ChProgram F
Solid Edge Web Parts 1.0 Type Library 1.0 Z:\Program F
SPhoneParser 1.0 Twpe Library 1.0 Z:\Program F
SPMighautoServer 1.0 Z:\Program F
snmarrvicres. NRMClienby? Tvne | ibrary 1.0 CriPranram FoY
< | >
(04 N [Cancel

12-4 - Add reference to Solid Edge Framework Type Library

Configuring Project Properties
Before you begin coding, you will need to configure your project's properties. From the Project menu,
select MyAddIn Properties as shown below.

Addins

2% MyAddIn - Microsoft Visual Studio

File Edit YWiew | Project | Build Debug Data Tools Window Commounity Help
3~ i - B L 5] Add Windows Farm, ., L b Debug - &
Bl % b oas i Add User Contral,. & B G)
?él/m_ 4] Add Companent... P—— - X JEH
Q'IE 2] AddModule,. \rations) v g
g T SETeET “e Add Class.., Shif t+AlE+C :.1 g
|_ | AddMewItem... Cir+Shift+a (1
M [add Existing Item... Shift+alk+a I %
Exclude From Project 5}
:ép Show Al Files : %
Add Reference... :
Add Web Reference...
Set as Starklp Project
MyAddIn Properties. .. N)
o .
e
< I | 5 |
_'-a Error Lis;::f.;,'é";, Find Symbaol Results%% Index Results For Missing. Walue Fielu:l.;
Ready Lm1 Cal 1 Ch1 INS

12-5 - Project Properties

Addins FEbA]

Click the Assembly Information button on the first screen to set the following properties of the
assembly. The Title and Description attributes will be displayed in the Solid Edge AddIn Manager.

Do not check the "Make assembly COM-Visible". This feature will make every public class, interface or
enumeration visible to COM. This is not necessary as you will manually configure what is visible to COM
later in this chapter.

Assembly Information

Title: My Addin |
Description: My Solid Edge AddIn |
Company: Default |
Product: |M';.f.ﬁ.u:||:|1n |
Copyright: \Copyright © Default 2008 |
Trademark: | |
pssembly version: (1 |10 o [0 |
File Yersian: oo o o |
LD 027h4d25-7ees-426c-aacs-414d02204chh |
Neutral Language: | (fone) v|
[] Make assembly COM-visible

| ok %J | cancel |

12-6 - Assembly Information

In the Compile tab, scroll down to the bottom of the page and check the "Register for COM Interop"
checkbox. This tells Visual Studio .NET to execute regasm.exe after you compile your project.
Regasm.exe is the assembly registration tool that allows COM clients to see your assembly. This is
similar to regsvr32.exe for C++ and Visual Basic 6 clients. If you need to unregister your addin, you will
need to execute regasm.exe /u MyAddin.dll. Regasm.exe can typically be found in the following path:
%WINDIR%\Microsoft.NET\Framework\v2.0.50727\RegAsm.exe

Addins

2% MyAddIn - Microsoft Visual Studio
File Edit Miew Project Build Debug Data Tools Window Community Help

H-iE- Gl @ 4]9 - F-5 b Debug - anyCRu -
}{sz ~MyaddIn® | Addin.vb - ¥ | JEH
— § 0
o =
= Application =
= Configuration: |.ﬁ.ctive (Debug) V| ,?,.,

iy
Compile® 1=
FlatForm: |.ﬁ.ctive {Any CPLD v| =
Debug an
Unused local wariable ” =l
References : — 7 n b
Instance variable accesses shared member i
Resources Recursive operator or properby access
Duplicate or overlapping catch blocks
Setkings -
Signing
L [] pisable all warnings
T | [Treat all warnings as errors ,
Generake XML documentation File |
Registerﬁ:r COM interop E |
b2 > .

'a Error Lisk ;él Find Symbal Results .% Index Results For Missing, Yalue Field |

Ready

12-7 - Register for COM interop

Coding the AddIn
The first thing you need to do before coding the addin is to generate a unique GUID. This GUID is what
will make your addin unique from other addin in Solid Edge. From the Tools menu, select Create GUID

as shown below.

Addins

2% MyAddIn - Microsoft Visual Studio

File Edit YWiew Project Build Debug Data | Tools | Window Commounity Help
o I o I xR | oy . [I:-_,* Attach ko Process... Chrl4+-Alk+-P t
IR N I Y- |
FL T b as |sESE| =2 |7 L33 gy Connect to Device...
>§- “AddInvb ﬂ; Conneck to Database. P JEH
é’ |*7[3nddln W Connect to Server... w | &
= =
E Imports 3Iystem. Runtime. Interq :;] Code Snippets Manager,,, Chrl+k, Chrl+B 7‘ g
L m
y Choose Toolbox Ikems., . i
[Public Class AddIn o
L Add-in Manager. .. E
End Class= Macros bl &':.f
o
3% Upgrade Yisual Basic & Code... %
[
| Create GUID = | ‘é‘]
] a2
L]
il |E=5
External Tools, .. | %
Efﬁ Device Emulatar Manager. .
Impart and Export Sektings. .. bt
<_ Cuskamize. .. t
_'E, Error Lisk ﬂ'@l Find Symbol Resulks _% Index Res Options. ..
Itemis) Saved Lm ¢ Col 3 Ch3 IS

12-8 - Create GUID

On the Create GUID screen, select option #4, Registry Format and click the Copy button. You can then
click Exit. The generated GUID in this example is {40A27375-93E4-4696-9160-E2419C8350A7}. For use
in the addin, you will need to remove the { and } from the GUID. i.e. You will use 40A27375-93E4-4696-

9160-E2419C8350A7.

Addins Fukp

Create GUID

Choose the desired format below, then zelect "Copy" to
copy the results to the clipboard [the results can then be

Egiﬁfd into your zource codel. Choosze "Exit' when Mew GLUID

GUID Fomat
(1. IMPLEMENT _OLECREATEL..]

() 2. DEFINE_GLID...]

() 3. static const struct GUID =1 .. }

(%) 4. Registy Format [ie. {xssmmes-sms . xux 1]

R ezult
{40427375-93E 4-4696-91B0-E 24190335047}

12-9 - Create GUID

Now you are ready to begin coding your addin. The first thing you need to do is decorate your addin
class with the following attributes. This information will be used by regasm.exe when registering your
assembly for COM.

Imports System.Runtime.InteropServices

<GuidAttribute ("40A27375-93E4-4696-9160-E2419C8350A7"), _
ProgIdAttribute ("MyAddIn.Addin"), _
ComVisible (True)> _

Public Class AddIn

End Class

All Solid Edge addins must have exactly one class that implements the
SolidEdgeFramework.ISolidEdgeAddIn interface. The following screenshot shows the easiest approach
to implementing an interface. Once intellisense comes up as shown below, highlight the
ISolidEdgeAddIn interface and press your <Enter> key.

Addins

2% MyAddIn - Microsoft Visual Studio

File Edit YWiew Project Build Debug Data Tools Window Commonity Help
@Jﬁtﬂ@ $ 2@ (9 - - 55| b Debug v =
_ar |E S| = 0 ol (d alld & 5 C)
};‘ " AddIn.yb* Y ;Eu
é_' |*7[3nddln w | |§§{Dleclaratiun5} W g
E Imports 3ystem. Runtime. Interopiervices 7‘ E
Al1E
O <GuidAttribute ("40AZY375-93E4-4626-9160-E2419C83504A7™) , o
m
Progldaittribute ("MyAddIn. iddin™), [==
ConVizible (True) > Ef‘
Publizc Class AddIn 2
Twplements SolidEdgeFramework. [>['<
SaleRe e ~0 ISEMewFils/Events a3 = "S;i
=0 ISEPartsListEvents o
= I5EShartCutMenuEvents ;
=0 TSEViewEvents i
’DM Interface [
=0 15olidEdgeBar |
1P ~0 I5olidEdgeBarEx: — T
= = | =0 [5olidEdgeRibbonBar =
'E, Error Lisk m, Find Symbol Resulks .% Index Resu -0 T5olidEdgeRibbonBarEx 55
Itemis) Saved Ln =2 KeyBinding el i

12-10 - Implementing ISolidEdgeAddIn

The next screenshot shows the ISolidEdgeAddIn interface being successfully implemented.
OnConnection, OnConnectToEnvironment, and OnDisconnection are now methods in your class. Once
your addin is registered and loaded by Solid Edge, it will call these three methods in your class at the

appropriate times.

Addins

2% MyAddIn, - Microsoft Visual Studio
File Edit Miew Project Build Debug Data Tools Window Community Help

G- s - G % Ga@ - - & E | b Debug - o
FRb wl=ssl=20l000 80850,

> Addin.vb| - X

g |‘f3ndd1“ V||d§§{DEEIaratinn5} w

g Imports 3ystewm. Runtime. Interop3ervices jﬁ

[<Guidittribute (404273 75-93E4-4696-9160-E2419C535047™) ,
Progldittribute ("MviddIn. Addin™) ,
ConVisible (True)> _

Publie Class AddlIn
Implenents S3olidEdgeFramework. ISolidEdgeiddIn

= FPublic Sub OnConnection(BvWVal Application Ls Chject, EvyWal Conhe

whEl, BEET 5 wap|] smod 3 uonnios ko

~ End 3Jub

= Public S3ub OnConnectToEnviromment (Bvval EnvCatID Az 2tring, Eviva

- End 3Jub

= Public Sub Onlisconnection(ByWal DisconnectModes L= ZolidEdgeFram

~ End Sub
LEnd Class w

< I >

'B Error Lisk ﬁl Find Symbal Results -% Index Results for Progldattribute class, about Progldattribute class

Item(s) Saved Ln1i Col 10 Ch 10 IS

12-11 - ISolidEdgeAddIn implementation

The following code snippet is the bare minimum code that you need to create a Solid Edge addin. Take
notice of the RegisterFunction and UnregisterFunction functions. They are decorated with the
ComRegisterFunctionAttribute and ComUnregisterFunctionAttribute attributes. These special functions
get executed by regasm.exe when registering \ unregistering your addin. This allows you to perform
registration tasks like writing additional registry values that are required by Solid Edge.

Simple AddIn Source Code (Visual Basic .NET)

Imports Microsoft.Win32
Imports System.Reflection
Imports System.Runtime.InteropServices

<GuidAttribute ("40A27375-93E4-4696-9160-E2419C8350A7"),
ProgIdAttribute ("MyAddIn.Addin"),
ComVisible (True)> _

Public Class AddIn

Addins kS

Implements SolidEdgeFramework.ISolidEdgeAddIn
Private m_addin As SolidEdgeFramework.AddIn
Private m_application As SolidEdgeFramework.Application

Public Sub OnConnection(_
ByVal Application As Object,
ByVal ConnectMode As SolidEdgeFramework.SeConnectMode,
ByVal AddInInstance As SolidEdgeFramework.AddIn)
Implements SolidEdgeFramework.ISolidEdgeAddIn.OnConnection

' Store local variables for later use
m_addin = AddInInstance
m_application = Application

' Set Addin's GUI Version
AddInInstance.GuiVersion = 1
End Sub

Public Sub OnConnectToEnvironment (_
ByVal EnvCatID As String,
ByVal pEnvironmentDispatch As Object,
ByVal bFirstTime As Boolean)
Implements SolidEdgeFramework.ISolidEdgeAddIn.OnConnectToEnvironment

End Sub

Public Sub OnDisconnection(_
ByVal DisconnectMode As SolidEdgeFramework.SeDisconnectMode)
Implements SolidEdgeFramework.ISolidEdgeAddIn.OnDisconnection

If Not (m_addin Is Nothing) Then
Marshal.ReleaseComObject (m_addin)
m_addin = Nothing

End If

If Not (m_application Is Nothing) Then
Marshal .ReleaseComObject (m_application)
m_application = Nothing

End If

End Sub

' Called by Regasm.exe
<ComRegisterFunctionAttribute ()> _
Public Shared Sub RegisterFunction(ByVal t As Type)
Dim baseKey As RegistryKey = Nothing
Dim summaryKey As RegistryKey = Nothing
Dim title As AssemblyTitleAttribute
Dim description As AssemblyDescriptionAttribute

Try
baseKey = Registry.ClassesRoot.CreateSubKey (_
"CLSID\{" & t.GUID.ToString & "}")

' Tell Solid Edge to automatically load your addin
baseKey.SetValue ("AutoConnect", 1)

' Write title
If t.Assembly.IsDefined (GetType (AssemblyTitleAttribute), True) Then

Addins

title = AssemblyTitleAttribute.GetCustomAttribute(_
t.Assembly, GetType (AssemblyTitleAttribute))
baseKey.SetValue ("409", title.Title)
End If

' Write description
If t.Assembly.IsDefined(_
GetType (AssemblyDescriptionAttribute), True) Then

description = AssemblyDescriptionAttribute.GetCustomAttribute (_
t.Assembly, GetType (AssemblyDescriptionAttribute))

summaryKey = baseKey.CreateSubKey ("Summary")
summaryKey.SetValue ("409", description.Description)
summaryKey.Close ()

End If

Write required registry entries for a Solid Edge Addin.

See secatids.h in C:\Program Files\Solid Edge VXX\SDK\include
'"CATID_SolidEdgeAddIn

baseKey.CreateSubKey (_
"Implemented Categories\{26B1D2D1-2B03-11d2-B589-080036E8B802}")

Specify the Environment Categories that you want you addin to work in

'"CATID_SEApplication
baseKey.CreateSubKey (_
"Environment Categories\{26618394-09D6-11d1-BA07-080036230602}")

'CATID_SEPart
baseKey.CreateSubKey (_

"Environment Categories\{26618396-09D6-11d1-BA07-080036230602}")
Catch ex As Exception

Finally
If Not (summaryKey Is Nothing) Then
summaryKey.Close ()
End If
If Not (baseKey Is Nothing) Then
baseKey.Close ()
End If
End Try
End Sub
' Called by Regasm.exe /u
<ComUnregisterFunctionAttribute()> _
Public Shared Sub UnregisterFunction(ByVal t As Type)
Try

' Remove any previously written registry entries

Registry.ClassesRoot.DeleteSubKeyTree (
"CLSID\{" + t.GUID.ToString() + "}")
Catch ex As Exception

End Try
End Sub
End Class

Addins

Simple AddIn Source Code (C#)

using Microsoft.Win32;

using System;

using System.Reflection;

using System.Runtime.InteropServices;

namespace MyAddIn
{
[GuidAttribute ("40A27375-93E4-4696-9160-E2419C8350A7"),
ProgId("MyAddIn.Addin"),
ComVisible (true)]
public class AddIn : SolidEdgeFramework.ISolidEdgeAddIn
{
private SolidEdgeFramework.AddIn m_addin;
private SolidEdgeFramework.Application m_application;

public AddIn()
{
}

#region ISolidEdgeAddIn Members

public void OnConnection (
object Application,
SolidEdgeFramework.SeConnectMode ConnectMode,
SolidEdgeFramework.AddIn AddInInstance)

// Store local variables for later use
m_addin = AddInInstance;
m_application = (SolidEdgeFramework.Application)Application;

// Set Addin's GUI Version
AddInInstance.GuiVersion = 1;

}

public void OnConnectToEnvironment (
string EnvCatID,
object pEnvironmentDispatch,
bool bFirstTime)

{

}

public void OnDisconnection(
SolidEdgeFramework.SeDisconnectMode DisconnectMode)
{
if (m_addin !'= null)
{
Marshal.ReleaseComObject (m_addin) ;
m_addin = null;

if (m_application != null)
Marshal.ReleaseComObject (m_application);

m_application = null;

}

Addins ks

}
#endregion
#region "Regasm.exe functions"”

// Called by Regasm.exe
[ComRegisterFunctionAttribute ()]
static void RegisterServer (Type t)
{
RegistryKey baseKey = null;
RegistryKey summaryKey = null;
AssemblyTitleAttribute titleAttribute = null;
AssemblyDescriptionAttribute descriptionAttribute = null;

try
{
baseKey = Registry.ClassesRoot.CreateSubKey (
@"CLSID\{" + t.GUID.ToString() + "}");

if (baseKey != null)

{
// Tell Solid Edge to automatically load your addin
baseKey.SetValue ("AutoConnect", 1);

// Write title
if (t.Assembly.IsDefined(typeof (AssemblyTitleAttribute), true))
{
titleAttribute = (AssemblyTitleAttribute)
AssemblyTitleAttribute.GetCustomAttribute (
t.Assembly, typeof (AssemblyTitleAttribute));

baseKey.SetValue ("409", titleAttribute.Title);
}

// Write description
if (t.Assembly.IsDefined(typeof (AssemblyDescriptionAttribute),
true))

descriptionAttribute = (AssemblyDescriptionAttribute)
AssemblyDescriptionAttribute.GetCustomAttribute (
t.Assembly, typeof (AssemblyDescriptionAttribute));

summaryKey = baseKey.CreateSubKey ("Summary") ;
summaryKey.SetValue ("409", descriptionAttribute.Description);

}

// Write required registry entries for a Solid Edge Addin
// See secatids.h in C:\Program Files\Solid Edge VXX\SDK\include

// CATID_SolidEdgeAddIn
baseKey.CreateSubKey (
@"Implemented Categories\{26B1D2D1-2B03-11d2-B589-
080036E8B8021}1") ;

// Specify the Environment Categories that you want you addin
// to work in

Addins ke

// CATID_SEApplication
baseKey.CreateSubKey (
@"Environment Categories\{26618394-09D6-11d1-BA07—
080036230602} ");

// CATID_SEPart
baseKey.CreateSubKey (
@"Environment Categories\{26618396-09D6-11d1-BA07—
080036230602} ");

finally

{ if (baseKey != null)
{ baseKey.Close () ;
if (baseKey != null)
{ baseKey.Close () ;
}

}

// Here we cleanup any registry values left from Regasm /u.
[ComUnregisterFunctionAttribute ()]
static void UnregisterServer (Type t)
{
try
{
Registry.ClassesRoot.DeleteSubKeyTree (

@"CLSID\{" + t.GUID.ToString() + "}");
}

catch
{
}

}

#endregion

}

Debugging your AddIn

The last step you will need to perform is to configure the debugger. Go back to the project properties as
described previously and click on the Debug tab. For the Start Action, select Start external program and
browse to Edge.exe. This will allow you to debug your addin during execution of Solid Edge.

Addins

29 MyAddin - Microsoft Visual Studio

File Edit \Miew Project Buld Debug Data Tools ‘Window Community Help

G- - bl Eh | % a9 - - -G B Debug » Any CPU -
fg‘ MyAddIn® | addIn.vb | - X
i
]

2
= application
= Configuration: |.ﬁ.ctive {Debug) b PlatForm: |.ﬁ.ctive (Any CPUY v|

Zompile
Skart Ackiaon
Debug*

{:} Start projeckt

S e e =

Refeienies (%) start external program:

Resources () Start browser with URL: | |
Settings Start Cptions

Signing | |

. I8 | e

[] use remate machine | |

Enable Debuggers

[] Enable unmanaged code debugging
[] Enable SqL Server debugging

Enable the Wisual Studio hosting process

|_‘3 Errar List]x} Find Symbaol Results[% Inde:x Resulks for AssemblyTitlesttribute class, about Assembly Titleattribute class

Ready

12-12 - Debug Configuration

Addins

Place a breakpoint in your code as shown below and press the <F5> key to begin debugging. If your

solution is setup correctly, Solid Edge will begin loading and Visual Studio .NET will break on your code.

2% MyAddIn, (Debugging) - Microsoft Visual Studio

File Edit YWew Project Buld Debug Data Tools Window Community Help

A - IR Y AL R R = R=a

b

hil
[1fs]
L

|
|
ol m B | == L= e | e -_ﬂvi T % b Az | iE iE

< AddInwb

| “t¢ addIn v | | ‘i OnConnection

[F] <Guidhctribute ("40AZ7375-93E4-4696-9160-E2419C55504L7") ,
ProgIdictribute ("MyiddIn. iddin™),
ComVisible (Trus)> _
Pubhlic Class AddIn
Implements SolidEdgeFramevork. ISolidEdgeiddIn
Private m addin A= SolidEdgeFrameworlk. AddIn
Private m application Az 3olidEdgeFramework.Application

= Public Sub OnConnection(_

EvWal Application As Object,

ByWal ConnectMode Az SolidEdgeFrawmework.2eConnectMode,
EvWal AddInInstance Az JolidEdgeFramework.iddIn)
Implements SolidEdgeFramework. ISolidEdgelddIn. OnConnection

' 3tore local wvariasbles for later use.
0 h_addin = hddInInstance
wm application = Lpplication

' Set Addin's GUI Version.

&
r:;j Zall Stack|E] Immediate Window | | =] Cutput | E Locals | [F] wakch 1

| %

Falpadol 4 & B

Ready Ln 20 Col& Chs

IND

12-13 - Debugging your addin

191

Addins

Once inside Solid Edge, open the AddIn Manager. You should see your addin listed as shown below.

Add-In Manager

Ayailable Add-ns E nvironmetts ()4
[] “web Publishing @ Solid Edge

2] Hyeddin @ Solid Part EveE]

[] S5MFeatureE dge Help

Dezcription:
by Solid Edge Addlin

L el

Add-ln Help Add-In Properties

12-14 - AddIn Manager

Useful References

Chapter 13 - Useful References

Microsoft Developer Network (MSDN) Links

Microsoft Developer Network (MSDN) - http://msdn2.microsoft.com

Visual Studio .NET Technology Map
http://msdn2.microsoft.com/library/ms973926.aspx

Visual Basic .NET Technology Map
http://msdn2.microsoft.com/library/ms973925.aspx

Microsoft .NET Framework FAQ
http://msdn2.microsoft.com/library/ms973850.aspx

MSDN Code Gallery

http://code.msdn.microsoft.com

General Naming Conventions
http://msdn2.microsoft.com/library/ms229045(VS.80).aspx

Microsoft Win32 to Microsoft .NET Framework API Map
http://msdn2.microsoft.com/library/aa302340.aspx

Microsoft .NET/COM Migration and Interoperability
http://msdn2.microsoft.com/library/ms978506.aspx

Improving .NET Application Performance and Scalability
http://msdn2.microsoft.com/library/ms998530.aspx

Exception Management in .NET
http://msdn2.microsoft.com/library/ms954599.aspx

Handling and Throwing Exceptions
http://msdn2.microsoft.com/library/aa720123.aspx

Quick Technology Finder
http://msdn2.microsoft.com/library/63bf39c2(VS.80).aspx

Deploying .NET Framework-based Applications
http://msdn2.microsoft.com/library/ms954585.aspx

Beyond (COM) Add Reference Has Anyone Seen the Bridge
http://msdn2.microsoft.com/library/ms973274.aspx

193

Useful References kL

101 Samples for Visual Studio 2005
http://msdn2.microsoft.com/vs2005/aa718334.aspx

Microsoft Newsgroups

microsoft.public.dotnet.faqs
news://msnews.microsoft.com/microsoft.public.dotnet.fags

microsoft.public.dotnet.framework
news://msnews.microsoft.com/microsoft.public.dotnet.framework

microsoft.public.dotnet.framework.interop
news://msnews.microsoft.com/microsoft.public.dotnet.framework.interop

microsoft.public.dotnet.framework.performance
news://msnews.microsoft.com/microsoft.public.dotnet.framework.performance

microsoft.public.dotnet.framework.windowsforms
news://msnews.microsoft.com/microsoft.public.dotnet.framework.windowsforms

microsoft.public.dotnet.framework.windowsforms.controls
news://msnews.microsoft.com/microsoft.public.dotnet.framework.windowsforms.controls

microsoft.public.dotnet.general
news://msnews.microsoft.com/microsoft.public.dotnet.general

microsoft.public.dotnet.languages.csharp
news://msnews.microsoft.com/microsoft.public.dotnet.languages.csharp

microsoft.public.dotnet.languages.vb
news://msnews.microsoft.com/microsoft.public.dotnet.languages.vb

microsoft.public.dotnet.languages.vb.controls
news://msnews.microsoft.com/microsoft.public.dotnet.languages.vb.controls

Solid Edge Newsgroups

* These newsgroups require a GTAC login.

solid_edge.binaries
news://bbsnotes.ugs.com/solid edge.binaries

Useful References KL

solid_edge.insight
news://bbsnotes.ugs.com/solid edge.insight

solid_edge.misc
news://bbsnotes.ugs.com/solid edge.misc

solid_edge.programming
news://bbsnotes.ugs.com/solid edge.programming

Programming Links

The Code Project
http://www.codeproject.com

PINVOKE.NET
http://pinvoke.net

DotNetJunkies
http://www.dotnetjunkies.com

VB.NET Heaven

http://www.vbdotnetheaven.com

vbAccelerator
http://www.vbaccelerator.com

CSharpFriends

http://www.csharpfriends.com

ic#code
http://www.icsharpcode.net

JasonNewell.NET
http://www.jasonnewell.net

