

LIFECYCLE

INSIGHTS

引言

在当今的经济环境中,经营机械加工车间绝非易事。利润低, 竞争可能来自国内或海外,客户要求最高质量的同时也要求在 极短的时间内交货。机会摆在那里,但只有技能娴熟的企业才 能从中获利。

正是在这种背景下,Lifecycle Insights 开展了 2017 年数控加 工调查研究。研究结果表明,驱使企业不断尝试改善运营的主 要因素是交付时间。然而,无数的技术挑战削弱了这些努力, 包括使用模型过程中的高摩擦、创建刀具路径的难度、不可靠 的G代码验证以及加工知识的低重用率。

幸运的是,许多此类挑战都可以通过现代机械加工车间的数字 化建设来解决。利用实现数字化建设的技术,工艺工程师能够 从任何 CAD 应用程序无缝地获取和操作三维模型,以自动化方 式开发高质量刀具路径,模拟仿真所生成的 G 代码,并对数控 知识进行标准化,使之可在整个过程中重复使用。

本电子书的目的旨在深入研究这些议题。首先,该出版物正式 发布了数控加工研究成果并将其语境化。其次,本文介绍了一 个满足现代机械加工车间需求的技术生态系统。最后,本文还 就后续步骤提出了建议。

经营机械加工车间需面对重重挑战。但是,使用正确的技术可 使其更简单、更有利可图。

及时交付是机械加工车间的首要问题

与许多参与开发过程的企业一样,机械加工车间经常面临改善 运营的压力。此次研究的受访者也不例外。

交付时间是推动机械加工车间变革的最重要因素,以近平二比 一的优势令仅次干之的答案黯然失色。这一发现,连同其他推 动变革的因素, 值得我们深入研究, 因为它们是上述企业的目标。

图1:机械加丁车间的主要目标

2017年数控加工研究, Lifecycle Insights, 215名受访者

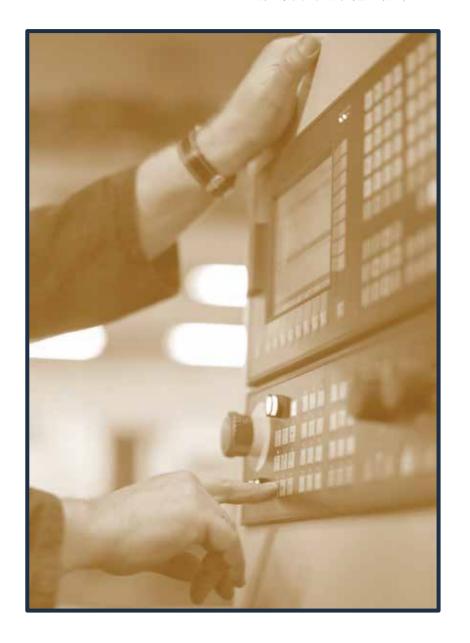
交付时间是重中之重

在调查中,关于此问题的许多答案都与时间有关。然而,受访 者最常选择的选项是交付时间, 或是从接受订单到向客户交付 订单之间的时间衡量。

为什么如此多受访者选择此答案?对机械加工车间而言,交付 时间是最有形的财务指标之一。一旦成功交付,企业便可以就 订单的剩余金额开具发票,因此交付时间就相当于开具发票的 时间。企业交付零件的速度越快,其开具发票、进而获得报酬 的速度便越快。对于规模较小的企业而言,库存现金和现金流 是最为重要的两个指标,代表了其偿还债务、支付员工薪酬、 以及保持财务稳健性的能力。

减少交付时间不仅对机械加工车间的财务健康状况有着重要影 响。它还代表了一种增加收入的理想方式。如果企业可以缩短 交付时间,便可以在给定的时间范围内完成更多的工作,无论 这个给定的时间范围是一个月还是一年,而这也就意味着更多 的收入。此外,他们无需为了实现这一目标而通过购买更多设 备来提高加工能力——购买设备意味着增加资本支出。因此, 缩短交付时间可以让企业提高顶线(收入), 同时维持或仅最低 限度地增加他们的底线(成本,包括初始成本和经常性成本)。 最终,这可以转变为利润增长。

刀具破损和周转时间


减少刀具磨损和破损的努力对机械加工车间来说意味着节省成 本。但不仅如此,还有其他影响,例如,意外的刀具破损会导 致交付时间显著延迟。意外的刀具磨损会迫使车间进行大量的 人工后加工质量工作,这也会延迟交付。

缩短加工时间也有助于减少交付时间。这可能是整个过程中最 长的一个时间段,具体视加工任务类型而定。因此,缩短加工 时间可减少交付时间。

提高验收率

提高客户验收率不是以时间为导向的结果,但肯定与财务有关。 未通过质量检验的零件将返回机械加工车间。而后,车间要么 必须对其进行整修,以满足客户的要求,从而延迟交付时间, 要么必须报废。如果必须废弃这些零件,则车间必须使用新原 材料加工更换零件,这一过程会增加订单成本,却不会相应增 加收入,进而削弱此单的盈利能力。

除了影响向客户交付完整的零件订单,某些合同还会因超过某 些退货阈值而受到经济处罚。总之,提高客户验收率会在很大 程度上影响财务状况。

机械加工车间最常见的时间浪费问题

交付时间是推动机械加工车间改善运营的主要问题。如果他们 能够降低交付时间,就可在无需大幅增加成本的情况下增加收 入,从而获得可观的利润增长。实现这一目标可能会遇到哪些 障碍和挑战?回答这个问题是数控加工研究的另一个目的。

调查的一部分向受访者列出了一系列加工挑战,并要求他们选 择他们认为最关键的三个。然而调查结果显示没有一项挑战 与其他挑战区别开来,任何一项挑战均不超过 30%。这代表 了机械加工车间在"订单交付"过程中面临的诸多不同问题。然 而,这些问题确实围绕共同主题而汇集一处。

模型导入、准备和变更过程中的摩擦

在从设计到加工零件的过程中,一组涉及到数字化和物理方面 的摩擦和低效的问题使得减少交付时间变得困难。这些问题包括:

- 数据必须在不同的软件(CAD、CAM、CMM)和团队之间 传输
- 很难使用客户的设计和工具模型
- 痛苦地适应内部或外部利益方的设计变更

图2:三大加工挑战:与模型相关 2017年数控加工研究, Lifecycle Insights, 215名受访者

导入模型并获得良好的几何体仍然是开发中许多团队的挑战。 然而,工艺师在准备刀具路径创建时面临着对这些模型进行更 改的额外挑战。这诵堂包括几何形状的改变, 因此制造起来并 不困难或成本不高。然而,当导入模型时,用于创建该几何体 的特征和参数已被剥离,结果得到的便是没有任何控件的立体 几何, 修改这样的模型既耗时又费力。

另一个问题在于设计变更。在设计发布时,模型应已最终确定。 但是,许多企业在发布后才发现设计问题,要求进行几何修改 和重新发布。由于超过 50% 的机械加工车间依赖独立的 CAD 和 CAM 系统,因此实施设计变更迫使他们重复整个过程,即

重新导入模型, 修复模型, 然后重新准备加工。这个过程也破 坏了并行开发的概念,即工艺师本可以在工程师设计组件时开 始布置刀具路径。

最后, 处理导出和导入几何问题还不是在处理来自客户的文件 时要应对的唯一问题。许多机械加工车间都拥有很多不同的 CAD、CAM 和 CMM 应用软件。开展一项工作可能需要 CAM 软件的刀具路径, 同时也需要 CMM 软件的检测路径。大约 75% 的机械加工车间使用独立的 CMM 检测流程、最终大多数企业 不得在其公司内部的这些系统之间通过几何体转换,引起几何 体转换问题。

总之,这些问题对缩短交付时间构成了重要障碍。

难以创建良好的刀具路径

在软件应用程序中有关刀具路径的数字化开发方面,存在难以 降低交付时间的其他问题。这些问题包括:

- 由于零件模型准备、许多刀具路径迭代、编辑等原因、导 致生成良好的刀具路径十分困难
- 由于空气切割、低材料去除率、工具过载、颤振等原因, 导致机器操作效率低下
- 已加工零件需要返工(质量、表面光洁度、美观等)以满 足要求
- 在车间使用纸质文档

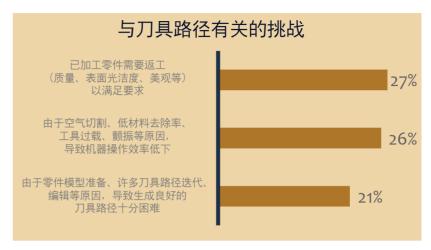


图3:三大加工挑战:与刀具路径有关 2017年数控加工研究, Lifecycle Insights, 215名受访者

创建刀具路径绝不简单,其间存在各种复杂的问题,包括模型 导入和清理。然而,开发一个好的刀具路径通常需要谨慎作业, 确保其至少按照计划完成预期效果。然而,许多企业发现他们 不能完全依靠 CAM 软件来可靠地生成刀具路径。本研究中约 有 21% 的受访者每天在其 CAM 软件应用程序中人工修改刀具 路径。

当开始切割金属时,很多问题都会浮现。开发可行的刀具路径 往往是不够的,机械加工车间需要有效的刀具路径来缩短交付 时间,这里的问题千差万别。有些刀具路径可能存在位置变 动,导致很少或没有材料被切割,有些刀具路径则可能会移除 太多材料或导致震动,其结果就是需要人工重新组装部分组件 以满足客户最初的要求。

在本研究中,24%的受访者每天都需要对零件进行计划外抛光, 以实现理想的表面光洁度,而这些也是妨碍车间缩短交付时间 的问题。

在开发高速加工刀具路径时,这三个问题尤为突出。在进行数 控加工时,这种加工的刀具路径实际上必须考虑切削刀具与设 备间相当大的冲击。许多车间,包括本研究中 67% 的受访者, 正在采用这种切割策略,因其可降低作业周转时间。然而,目 前为止,已认知的刀具路径问题在高速加工中越发突出。因此, 要有效地使用这种加工策略,必须研究正确的刀具路径。

令人惊讶的是, 61% 的机械加工车间采用纸质方式将关键制造 文件(工序表、工具清单和工序示意图)传送到车间。这使得 使用标准化和灵活的切割方法有效驱动机床变得更具挑战性。

不可靠的 G 代码虚拟验证

确保 G 代码(一种刀具路径的设备特定指令)按预期运行是切 割金属之前的关键步骤。许多企业都以虚拟方式, 将验证 G 代 码作为仿真进行,这消除了损坏工具、加工材料或加工设备的 风险。但是,对于一些企业来说,这也存在问题。这些问题包括:

- 机床诵常与 CAM 软件中的仿真行为不同
- 需要人工查验数控程序(G 代码)

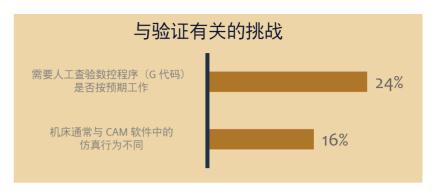


图4: 三大加丁排战: 与验证有关 2017年数控加工研究, Lifecycle Insights, 215名受访者

但是, 因为数字验证很少基于实际驱动数控机床的 G 代码进行, 所以 CAM 应用程序中的仿真可能无法捕获与刀具路径有关的 所有问题。当使用 CAM 应用程序的虚拟验证无法可靠地捕获 此类问题时,必须人工查验数控机床 G 代码指令,而这需要逐 行检查 G 代码的文本。

人工检查 G 代码极其费力耗时,可能会延迟交付时间。请注意, 这不是一个小问题, 本研究中有 27% 的受访者每天人工修改 G 代码。此外,人工检查并不能消除物理世界中的每一个问题。 大约 32% 的受访者每周都会遇到工具零件冲突的问题。

新技术的机会

减少机械加工车间的交付时间存在许多挑战。然而,企业无需 将目光锁定在风险上,同时也有许多可以缩短交付时间的机会。

利用3D打印技术进行生产

近年来, 3D 打印技术的迅猛发展令制造商们兴奋不已。许多 人预测, 未来零件生产可以在一个小时内打印完成, 而无需花 费一天时间用来切割金属。有趣的是,研究结果表明,这样的 未来会比预想来得更快。

- 37%的受访者在实验工作中使用 3D 打印
- 25%的受访者在特定工作中使用 3D 打印
- 12%的受访者在主流工作中使用 3D 打印

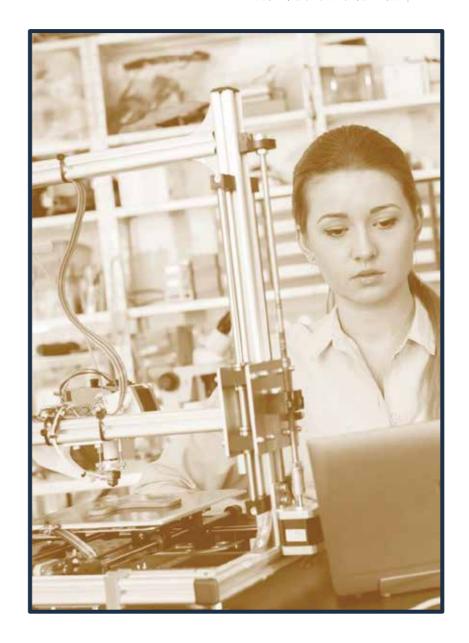
这对交付时间的影响是巨大的。打印零件比切割金属更快, 这 缩短了交付这些零件所需的时间。当然还有其他影响。使用 3D 打印,制造商可以大幅减少所需的操作、设置和机器数量, 从而减少时间和成本,并最终缩短交付时间。此外, 3D 打印 可帮助制造商生产以前无法制造的复杂零件。

最后,用材料构建组件来取代切割材料的简单行为也会对成本 产生影响。使用 3D 打印几乎不会造成浪费, 因为剩余的材料 可以用于下一项工作。使用机械加工, 虽然金属屑可以回收利 用,但无法轻易再利用。并且,利用 3D 打印而非减材制造方 法也是提高利润的机会。

采用机器人操作和加工

一些制造商开始采用的另一项技术是使用机器人进行机械操作 和加丁。本次研究结果显示,24%的受访者目前正在使用机器 人进行机械操作和数控加工。传统而言,这些功能实现了起重、 定位和焊接等操作任务的自动化, 但如今的机器人装配有刀具 固定头, 使其也可以进行修剪、抛光和去毛刺等操作。

在机械加工中应用机器人的传统和现代功能可提高自动化程 度,实现质量的一致性,在单一设置中加工更大的零件,并延 长工作时间。有效利用机器人技术的关键是利用可以支持此类 编程任务的 CAM 应用程序。


使用 IIOT 洞悉制造业

另一个新兴趋势是工业物联网(IIoT),其中传感器和智能软件 已被应用到车间。其目的是从加工中心和其他生产设备中捕获 数据并对其进行分析,以识别质量问题或机器错误等异常情况。 一旦确定,就可以采取纠正措施来缓解这些问题。在本次研究 中,约 29% 的受访者通过附着干机器上的控制器或传感器进 行机器数据采集 (MDA)。

标准化、数据控制和重用

企业可以通过标准化、数据控制和数控知识的重用来减少交付 时间。其理念是在不同作业之间,对机床设置进行编码,如主 轴转速、进给速度、步距长度和其他信息等。理论上,这应能 减少编制刀具路径和生成G代码所需的准备工作。该研究的结 果表明,约有39%的企业正在进行这种标准化和重用工作。虽 然先进的制造商实施了存储、分类和重用知识的流程,但只有 不到 30%的机加车间对其数据进行管理和控制。

在加工操作中实现标准化和重用尤其有利于缩短交付时间和交 付高质量零件。审核良好实践并在机械加工车间广泛使用可让 所有工艺工程师获益。此外,这意味着个人不必开发自己的方 法来创造良好的流程。总之,通过标准化和重用可以在更短的 时间内交付更好的质量。

集成加工生态系统

在减少交付时间方面,机械加工车间面临着一系列挑战和机遇。

克服这些障碍或追求这些改讲机会与用于执行"订单交付"流 程的技术密切相关。有趣的是,有充分的理由证明一组集成软 件应用程序可以作为单个 IT 生态系统。

适用于导入几何体的强大 CAD 工具

如前所述,机械加工车间必须使用各种来源的设计模型。在此 背景下, 具有参数化建模、直接建模和小面建模功能非常重要。

参数化建模为几何图形提供强大的功能和尺寸控制。通过允许 用户将智能嵌入到模型中,参数化建模可以基于几个简单的输 入创建刀具路径和检测路径。而直接建模允许用户利用几何面 推、拉和拖动等动作来操作几何模型,而无需知道模型是如何 构建的。这是准备导入几何体用于加丁的理想应用。小面建模 允许用户直接对小面体进行修改,这些小面体模型主要来源于 如激光扫描的结果、STL导入和几何拓扑优化结果。最值得注 意的是,它帮助人们避免了在进行利用这些数据之前,将小面 几.何体转换为精确几.何体的痛苦过程。

这些功能直接解决了本书此前所述的模型导入、准备和更改过 程中与摩擦有关的问题。 诵过消除这些问题, 机械加工车间可 以缩短交付时间。

集成 CAD-CAM-CMM 软件套件

机械加工车间必须克服的另一挑战是需要在CAD 环境、 CAM 环境和 CMM 环境中使用模型。集成了 CAD-CAM-CMM 软件应 用程序的套件使用单一模型, 而不是来回对其进行转换。通过 利用单个软件应用程序而不是几个软件应用程序, 用户可以 消除无数的几何转换问题。因此,设计师、工艺师和质量检 验员可以在单一环境中设计、导入和修复几何体, 开发和导出 数控设备的刀具路径以及 CMM 机床的检测路径等。这显著减 少了数字化过程中的摩擦。

模型驱动的加工过程

机械加工车间面临的另一问题是需要适应工程师和客户的设计 变更。解决此问题的一个主要方法是主模型法(或模型驱动法)。 它允许工艺师从设计师的3D模型中创建一个派生版本。然后可 以对之进行修改和调整,为刀具路径的编制做好准备。这样, 当原始设计进行更改时,也会传递到包括加工模型和检测模型 在内的派生模型中。这意味着刀具路径和检测路径也会随之自 动目安全地得到更新。

编程效率和自动化

良好刀具路径的自动化开发对机械加工车间来说绝对是个挑 战——耗时极长日容易出错,需要人工修改。但是,现代 CAM 软件应用程序的新功能提供了一种缓解此问题的方法。基于特 征的加工允许数控程序员自动为大量智能加工操作创建刀具路 径。这种加工特征可以以各种方式对修改作出反应, 目更具弹 性。它们提供了一种自动化方法来创建高质量的刀具路径,从 而消除了与数控编程有关的一些(即使并非全部)人工操作。

管理制造模型和数据

从设计到切割金属的过渡生成了一系列重要的数字工件。设计 模型用于创建制造模型,可以对其进行调整和修改以进行生产。 该制造模型用于创建工序示意图、工序表、刀具清单、刀具路 径和检测工艺单。制造过程会使用到所有这些数字化的可交付 物, 此数字工作链的任何环节都可能发生变更, 管理这种变更 至关重要;否则,错误的信息可能被用于切割金属,导致产生 废品和延误。

管理所有这些工件并提供单一数据来源是产品数据 管理(PDM)解决方案的目的。这些技术管理可交付物之间的 关系, 将变更通知给适当的利益相关方, 并确保在流程的每个 阶段使用这些可交付物的正确版本。

集成加工生态系统的一个诱人之处在干,整个团队都可以获得 单一的数据来源。工程师可以确定他们所使用的是最新版本的 模型, 而数控程序员则使用发布的零件模型进行刀具路径开发。 此外,闭合该环路还提供了其他令人兴奋的优势。工艺工程师 可以将加工模型存储于他们做出修改的同一系统中,创建所需 设计在最终生产之前的变更历史记录。捕获这些知识对于今后 制定更明智的决策至关重要。

在捕获质量信息中还存在另一个机会。各种制造执行和质量系 统数据可以连接到设计和加工模型上,闭合设计变更的环路。 总之,对"订单交付"流程中的所有工件进行管理使得每个人 都能访问单一数据来源,从而消除代价高昂的错误和延迟。此 外,还创建了一个历史记录,可将信息反馈给工程师。

综述和结论

根据 Lifecycle Insights 的数控加工研究,减少交付时间是当今 机械加工车间的首要目标。实现这一目标可以在保持类似成本 的同时完成更多工作, 进而实现收入增长。

减少交付时间的挑战

然而,缩短交付时间并非易事。要实现这目标,需克服大量挑战, 包括:

- 模型导入、准备和变更过程中的摩擦使得初始准备刀具路 径模型及后期接受设计变更十分困难
- 难以创建良好刀具路径导致刀具路径多次迭代、对其进行 人工修改以及人工完成加工零件的需要
- 不可靠的 G 代码虚拟验证意味着必须投入更多人力对基于 文本的机器代码进行查验

减少交付时间的机会

除了这些加工挑战外,机械加工车间还可以寻求实现目标的机 会,包括:

- 利用 3D 打印技术进行生产提供了一种以更低的成本、更 快的速度进行零件生产和交付的方法
- 采用机器人操作和加工实现了自动化,进而获得更高的质 量和灵活性
- 使用 **IIoT** 洞悉制造业可以将数据传输到加工设备上,从而 提供改进的可视性
- 标准化、数据控制和重用加速了良好可靠的刀具路径的开发

集成加工生态系统

新技术,特别是软件应用程序的集成加工生态系统,为解决减 少交付时间的挑战和机遇提供了一种手段。

- 适用于导入几何体的强大 CAD 工具为工艺工程师提供了 准备模型所需的功能
- 集成 CAD-CAM-CMM 软件套件减少了企业转化模型的需求
- 模型驱动的加工过程允许工艺工程师去完成工作而无需担 心设计变更
- 编程效率和自动化使基于智能特征的刀具路径适应变化
- 管理制造模型和数据提供了一个安全的保险库,可以为设 计模型、制造模型等提供单一的数据来源

如今,经营一家机械加工车间绝非易事。但是,使用正确的技 术可使其更简单、更有利可图。

© 2017 LC-Insights LLC

Chad Jackson 是 Lifecycle Insights 的分析师、 研究员和博客写手,提供有关 CAD、CAE、 PDM 和 PLM 等 工 程 使 能 技 术 的 洞 见。 chad.jackson@lifecycleinsights.com

数控加工研究的生命周期与人数统计

数控加工研究

数控加工研究调查了现代机械加工车间的业务优先级以及战术 实践和技术。

2016 年 9 月至 10 月期间, Lifecycle Insights 对 215 名受访者 进行了调查, 以评估现代机械加工车间所采用的策略和战术, 尤其关注其业务目标、通用实践和技术部署。

调查共涉及 215 名受访者。然而,此次研究的结果仅来自其中 一部分受访者, 共计 177 人, 不包括软件提供商、服务提供商 和系统集成商。

此次研究调查的受访者服务于广泛的行业。受访者中占比最高 的行业包括:航空航天和国防48%、工业机械24%、汽车24%、 高科技、电子和消费品 23%、能源设备(石油和天然气)19%, 以及建筑、农业或重型机械 18%。请注意,由于供应商通常服 务干多个行业,因此未限制受访者仅选择一个行业。

这些受访者受雇于收益水平各异的企业。包括:74%来自收益 少于 1 亿美元的公司, 15%来自收益介于 1 亿美元和 10 亿美 元之间的公司,11%来自收益超过10亿美元的公司。

