现代化车间数字化之旅

数控加工研究报告

LIFECYCLE

INSIGHTS

简介

在如今的经济环境中,车间的运转并非轻而易举之事。其利润 极其微薄。加工作业所面临的挑战可能远在另一座城市, 甚至 要飘洋过海。客户在追求质量的同时,还要求在极短的时间内 供货。机会确实存在,但只有技术精湛的企业才能从中获利。

Lifecycle Insights 正是在这样的背景下开展了我们的 2017 数控加 工研究报告。研究结果表明,任何改善运营的主要推动因素都 是交货时间。但是,大量技术难题削弱了这些努力,包括使用 模型过程中的大量冲突、创建刀轨方面的重重困难、G代码验 证方面的不确定性以及加工知识的低重用级别。

幸运的是, 其中很多难题可以通过现代化车间的数字化之旅来 解决。助力实现这一数字化之旅的技术让机械师可以无缝准备 和操控任何 CAD 应用程序中的模型,以自动化方式制定高质量 刀轨,模拟 G 代码的生成执行操作以及在整个过程中实现数控 知识重用的标准化。

本电子书的宗旨就是深入研究这些问题。首先,本电子书正式 出版数控加工研究结果并对其进行情境化。接下来,本书将介 绍这些技术的生态系统,从而帮助解决现代化车间的各项需 求。最后,本书还会推荐一些后续举措。

车间的运转面临着众多挑战。但是,运用正确的技术可以使其 变得更加简单、盈利水平更高。

交货时间是车间的头等大事

加丁车间,与许多参与开发过程的企业一样,都面临着改善运 营的压力。参与本次研究的人,对此都毫无疑义。

交货时间显然是推动车间改善最重要的因素,几乎以二比一的 优势碾压下一个选项答案。这项发现,连同改善车间的其他推 动因素, 值得我们大家深入探讨, 因为它代表了这些企业追求 的目标。

图1: 车间主要目标 Lifecycle Insights, 2017 数控加工研究, 共计215 名参与者

交货时间是头等大事

此项调查问题的很多回答都与时间有关。但是,绝大部分人选 择的选项都是 交货时间,或者是从接受订单到向客户供货这段 时间的长短。

为什么这个答案的选择频率如此之高呢? 交货时间代表车间最 为切实的财务指标。一旦交货完毕,企业就可以结算订单剩余 的货币价值,这无异于*即时开票*。企业越快发货,就能越快开 发票,最终也就能越快获得付款。对于小型企业而言,手头资 金和流动资金是最重要的两项指标,代表其应对欠款、支付员 工工资能力以及财政状况。

缩短 交货时间对于车间改善财政状况具有至关重要的影响。这 是增加财政收入的一种理想形式。如果企业可以缩短交货时 间,就可以在给定时间段完成更多任务,无论这个时间段是一 个月还是一年,都可以转换为更多的财政收入。此外,他们在 取得这些成就的时候,并不需要增加设备购买数量来提高加工 能力,因为这可能需要额外支出。正因如此,缩短交货时间让 企业可以在提高收入的同时,保持或尽量将底价(成本,包括 初始成本和经常成本)增长控制在最低程度。这就可以转变为 利润的增长。

刀具损坏和周转时间

降低刀具磨损和毁坏的举措给车间带来成本节约方面的影响。 但可能也会产生其他后果。例如, 刀具的意外损坏会严重导致 交货时间延迟。意外的刀具磨损会迫使车间不得不在加工完成 之后开展大量手动质量工作,而这也会延迟交货。

*缩短加工时间*也是帮助实现*即时交货*的方式。根据加工作业类 型的不同, 这可能是整个流程中时间最长的一部分。缩短加工 时间就意味着缩短 交货时间。

日益提高的接受度

提高客户接受度并不一定是以时间为导向的,但一定是与财政 收入相关的。那些没有通过质量检测的零件会被退回车间。因 此,这些零件必须重新加工,才能满足客户要求,这样也会延 迟交货时间, 否则零件可能就必须作废。如果这些零件必须作 废,必须使用新材料加工替换件,这一过程会增加订单成本, 却不会相应增加财政收入。这反过来也会削减利润。除了不能 将所有订单零件发货给客户这些影响以外,有些合同还规定了 有关超过特定返工阈值方面的罚款。总而言之, 提高客户接受 度存在很多财政方面的影响。

车间最为费时的问题

*交货时间*是推动车间改善运营的最重要因素。如果可以缩短交 货时间,他们就一直可以增加收入而不会显著提高成本,从而 产生可观的利润增长。在实现这一目标的过程中,可能会遇到 哪些障碍和挑战?对于这一问题的探索,是此次数控加工研究 的另一大职责。

此项调查的其中一部分为参与者提供了一个加工所面临的挑战 列表,让他们选择其中三个他们认为最重要的方面。与此项研 究的总体操作一样,其中没有哪项挑战超出其他很多,没有一 项超出 30%。这集中体现了车间在从订单到发货过程中的众多不 同问题。尽管如此,这些问题却都指向了一些公共主题。

模型导入、准备和更改中的冲突

难以缩短交货时间的一系列问题都与各种冲突和效率低下有 关, 无论是数字上还是物理上, 从设计转向加工件时都会遇 到。这包括:

- 数据必须在不同软件(CAD、CAM、CMM)和团队之间 传递
- 难以处理客户的设计和加工模型
- 难于适应内部或外部相关人员的设计变更

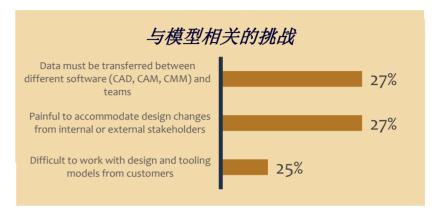


图2: 加丁最主要的三项挑战: 与模型有关 Lifecycle Insights, 2017 数控加工研究, 共计215 名参与者

导入模型并获得良好的几何体,一直是众多开发团队的一项挑 战。但是, 机械师在准备创建刀轨的过程中, 还会面临针对此 类模型进行更改的其他挑战。这通常包括针对几何体进行更 改,从而使得制造不那么困难或成本高昂。但在导入模型时, 用于创建几何体的特征与参数可能会丢失。结果生成的实体几 何体可能没有任何约束控制。修改此类模型较为耗时且煞费苦

另一大挑战存在于设计变更。设计发布时,模型应已确定。但 是,许多企业会在设计已经发布之后才发现问题,因而必须修 改几何体并重新发布。由于超过 50% 的车间依赖于独立 CAD 和 CAM 系统, 进行设计更改会使他们不得不重复整个过程, 即首 先重新导入模型、修复模型, 然后重新准备模型用于加工。这 一过程削弱了并行开发的理念,即机械师可以在工程师设计组 件时就开始布置刀轨。

最后,导出和导入几何体问题并不是处理客户文件时遇到的仅 有问题。许多车间拥有大量 CAD、CAM 和 CMM 软件应用程 序。作业过程中需要从 CAM 软件获取刀轨, 然后根据 CMM 软 件检测路径。由于大约 75% 的车间使用非互联 CMM 检测流程, 大部分企业最终会在内部自身转换这些系统之间的几何体,因 而导致几何体转换问题。

总体而言,这些问题都对缩短交货时间形成重大障碍。

创建优质刀轨所遇到的困难

其他难以缩短交货时间的问题来源于在软件应用程序中以数字 化形式制定刀轨。这些因素包括:

- 由于零件模型准备、大量刀轨迭代、编辑等原因,生成 优质刀轨较为困难
- 由于空切、移料速率低、刀具过载、颤振等原因、机床 运转不够高效
- 加丁件需要返丁(质量、表面粗糙度、美观等原因) 才 能满足要求
- 使用的车间文档为纸质文档

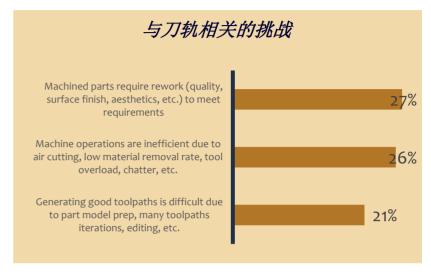


图3: 加工最主要的三项挑战: 与刀轨有关 Lifecycle Insights, 2017 数控加工研究, 共计 215 名参与者

创建刀轨绝不简单。其中涉及各种复杂问题,包括模型导入和 清理。但是,制定优质刀轨通常需要细致的技能,这样才能确 保刀轨满足所需效果,至少是预期的效果。不过,很多企业发 现他们并不能完全依赖于 CAM 软件来生成可靠刀轨。大约 21% 的调查问卷参与者会每天在 CAM 软件应用程序中手动修改刀 轨。

在开始切削金属件时,很多问题才迭见杂出。制定可行的刀轨 往往还不够。车间需要高效的刀轨,才能缩短 交货时间。这里 的问题层出不穷。有些刀轨在移刀时切削的材料很少或者没有 材料。有些刀轨可能会移料过多,或者会导致颤振。结果导致 大量组件需要手动返工,才能满足客户的初始要求。大约24% 的调查问卷参与者为了实现所需的表面粗糙度,会每天进行计 划之外的零件抛光。这些也是阻碍车间缩短交货时间的其他问 **颞所在。**

这三个问题在制定高速加工刀轨时尤其明显。此类加工刀轨在 进行数控加工移动时,必须真正考虑切削刀具和设备的合适动 量。大量车间,包括此次调查67%的参与者都采用了这种切削 策略,因为这种策略可以减少作业的周转时间。但迄今为止发 现的刀轨问题只会在高速加工过程中加剧。不过,为了高效使 用此类加工策略,必须制定正确的刀轨。

令人惊讶的是,61%的车间使用纸张相互传递重要加工文档(加 工报表、刀具清单以及加工图纸)。只有在使用标准化和灵活 切削方法高效驱动车床时, 面临的挑战才更大。

不可信赖的 G 代码虚拟验证

在切削金属件之前,确保 G 代码、设备特定版本的刀轨能够按 照预期运行,这是极为重要的一步。许多企业以仿真虚拟方式 验证 G 代码,可以避免刀具损坏、工作材料或加工设备带来的 风险。但是,对于一些企业而言,这也存在问题。这些问题包 括:

- 机床经常没有按照CAM 软件的仿真结果运转
- 需要手动验证数控程序(G代码)

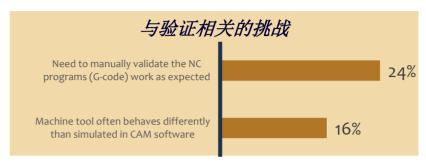


图4: 加工最主要的两项挑战: 与验证有关

Lifecycle Insights, 2017 数控加工研究, 共计215 名参与者

但是, CAM 应用程序中的仿真可能没法捕捉与刀轨相关的所有 问题,因为数字化验证很少基于实际驱动数控机床的后处理 G 代码。使用 CAM 应用程序进行虚拟验证,无法可靠地捕捉此类 问题,企业必须人工审核为数控机床提供指导说明的 G 代码。 这种审核是通过逐行检查G代码文本进行的。

人工审核 G 代码是一项耗时而费神的任务, 会延迟 交货时间。 这一点不能掉以轻心。大约 27% 的调查问卷参与者会每天手动 修改G代码。此外,人工审核在现实世界里并不能排除所有问 题。大约32%的参与者每周都会遇到零件刀轨碰撞问题。

新兴技术带来良机

车间要缩短交货时间, 面临着诸多挑战。但是, 这些企业无需 一味担心风险。除此以外,还有大量机会可以为缩短 交货时间 创诰可能。

利用 3D 打印进行生产

3D 打印时代的大爆炸,近年来让制造企业为之雀跃。很多人预 测,总有一天,生产零件可以只要一个小时就能打印出来,而 不需要花费一天的时间进行金属切削。有趣的是, 研究结果表 明,未来比预测的将更快到来。

- 37%的参与者使用 3D 打印进行实验
- 25%的参与者使用 3D 打印进行选择
- 12%的参与者使用 3D 打印进行主要工作

对于交货时间的影响特别引人注意。打印零件可能比切削金属 件更快,这可以缩短零件发货的时间。当然可能也会产生其他 影响。使用 3D 打印,制造商可以大幅减少操作、设置和所需机 器数量,从而减少时间和成本以缩短*交货时间*。此外,3D打印 帮助制造商生产之前无法加工的复杂零件。

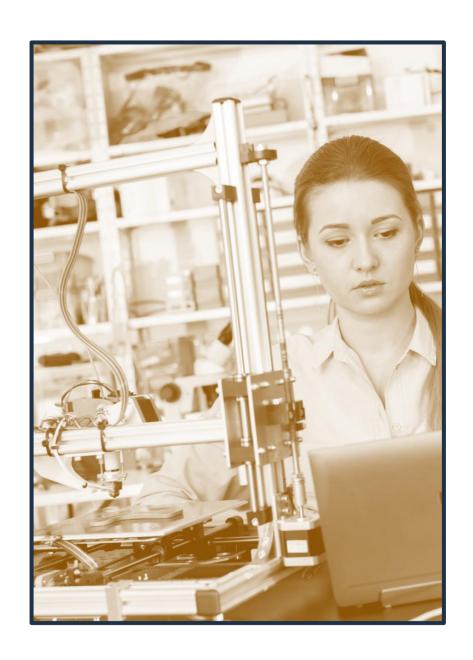
最后, 收集组件加工余料而非切除材料这一简单操作, 也会带 来成本方面的影响。采用 3D 打印技术, 浪费很少或并不存在浪 费,因为移除的材料可以在下一作业中使用。通过加工,金属 碎屑可以循环使用,不过不能直接重用。利用 3D 打印而非减材 制造方法,对于提高利润也是一大良机。

采用机器人管理与机加工

一些制造商开始信奉的另一项技术就是使用机器人进行管理与 机加工。研究结果表明,24%的参与者目前使用机器人进行管理

与数控加工。这些功能以前只能执行提升、定位和焊接之类自 动化生产任务。但如今机器人可以安装夹头,因而可以执行修 剪、抛光和夫毛刺之类操作。

在加工过程中应用传统和先进的机器人技术, 可以提高自动化 程度,保证质量的一致性,允许在同一设置中加工更大零件并 延长机器运转时间。高效使用机器人技术的一个关键点就是利 用能够支持此类编程任务的 CAM 应用程序。


使用工业物联网获得制造见解

另一项新兴趋势随工业物联网(IIoT)而生,将传感器和智能软件 应用于车间。此处的理念是从加工中心和其他生产设备捕获数 据,对其进行分析以识别质量问题或机械故障之类异常现象。 一旦识别到异常现象,就可以采取纠正措施,减轻此类问题的 影响。29%参与此项调查问卷的人会使用来源于机床控制器或传 感器的机床数据采集 (MDA)。

标准化、数据控制和重用

缩短 交货时间的机会存在于企业对于数控知识的标准化、数据 控制和重用。此处的理念是整理机床设置,例如不同作业的进 料、速度、步距值和其他信息。理论上而言,这应该可以减少 制定刀轨和生成 G 代码所需的准备。研究结果表明,大约 39% 的企业都在追求这种标准化和重用。先进的制造商实施存储过 程,对知识进行分类和重用,不到30%的车间管理并控制数 据。

在加工业采用标准化和重用,对于交货时间尤为适用,并带来 了高质量的零件。审查良好实践并在整个车间进行推广, 可以 让所有机械师获利。此外,这也意味着,任何人都不用重复劳 动,自己探索方法来创建良好实践。总而言之,标准化和重用 策略可以在更短的时间内实现更高的质量。

集成式加工生态系统

关于缩短 交货时间,车间面临着一系列挑战和机遇。克服这些 障碍并追求改进机会,这与执行从订单到交货过程所用的技术 紧密相连。有趣的是,集成式软件应用程序可以作为一个 IT 生 态系统密切合作。

导入几何体的强大 CAD 工具

正如前面提到的,车间必须处理各种不同来源的设计模型。在 这种情况下,拥有参数化、直接和小平面建模功能就至关重

参数化建模对几何体提供强大的功能和尺寸控制。用户能够将 智能化融入模型,因而能够根据少量简单输入创建刀轨和检测 路径。直接建模允许用户推动和拖动几何体,而无需了解模型 的构建方式。这是准备导入几何体进行加工的理想应用方式。 小平面建模允许用户修改网格几何体、激光扫描结果、STL 导出 和拓扑优化。最为特别的是,它让企业可以避免在进行更改之 前将网格几何体转换为边界表示几何体的痛苦过程。

这些功能直接解决了本电子书之前提到的与模型导入、准备和 更改过程中相关的冲突问题。通过消除这些问题,车间可以缩 短其交货时间。

CAD-CAM-CMM 集成式套装软件

车间必须解决的另一大主要挑战就是需要在 CAD 环境、CAM 环 境和 CMM 环境中处理模型。CAD-CAM-CMM 集成式套装软件应 用程序只需使用一个模型, 而不用来回转换。通过利用一种软 件应用程序而非几种,用户可以消除大量几何体转换问题。因

此, 工程师、机械师和质检员可以在同一环境中设计、导入和 修复几何体、制定和导出满足数控要求的刀轨以及坐标测量机 的检测路径。这在很大程度上减少了数字化过程中的冲突数

模型驱动的加工流程

车间面临的另一大问题就是需要调整适应工程师和客户的设计 变更。此问题的一项重要方法就是主模型方法(或模型驱动流 程)。这让机械师可以根据工程师的 3D 模型创建派生版本模 型。该模型随后可以修改和调整,从而准备确定刀轨。随后, 在对原始设计进行更改时, 它会自动填充派生模型, 包括加工 和检测模型。这就意味着, 刀轨和检测路径随后可以自动化而 安全地更新。

对生产效率和自动化进行编程

自动制定优质刀轨对于车间而言无疑是一项挑战。这一过程耗 时长久且容易出错,需要手动修改。但是,现代化 CAM 软件应 用程序的新增功能为缓解此问题提供了一种方式。基于特征的 加工允许数控编程员自动为大量智能加工工序创建刀轨。此类 加工功能可以通过多种方式更加迅速地应对各种修改。这些功 能为创建高质量刀轨提供自动化方式,能够消除部分与数控编 程有关的手动操作,即使不能完全消除。

管理加工模型和数据

从设计到切削金属的转变,形成了一系列重要的数字化工件。 设计模型用于创建制造模型,设计模型可能会因生产而调整和 更改。制造模型用于创建加工图纸、加工报表、刀具清单、刀 轨和检测指导说明。所有这些数字化交付件都是制造过程所需 使用的。工件数字化链的任何环节都可能发生更改。管理此类 更改是不可或缺的, 否则切削金属所用的信息可能出错, 导致 废料和延误的产生。

管理所有这些工件并提供统一的真实数据访问途径, 正是产品 数据管理(PDM)解决方案的设计初衷。这些技术可以管理不同 交付件之间的关系,通知变更涉及的相关人员,确保流程每个 阶段使用的交付件版本正确。

集成式加工生态系统极有吸引力的一个方面就是,整个团队可 以访问同一真实数据来源。工程师们可以确信自己使用的模型 版本是最新的,而数控编程员可以使用已发布的零件模型创建 刀轨。此外,形成此闭环还具有另一项激动人心的优势。机械 师可以在修改加工模型的同一系统中存储模型, 形成最终生产 之前所需设计更改的历史记录。捕获这些信息是后续更好决策 的必要依据。

另一项优势就在干捕获质量信息。各种类型的制造执行和质量 系统数据都可以与设计和加工模型相连,形成设计变更闭环。 总而言之,对订单到交货这一过程中的所有工件进行管理,就 可以让所有人都能访问同一真实数据来源,消除成本高昂的错 误和延误。它还会创建反馈给工程师的信息历史记录。

总结和结论

根据 Lifecycle Insights 的数控加工研究,缩短*交货时间*是如今车 间的首要目标。实现这一目标,就可以转换为收入的提高,因 为在保持相似成本水平的情况下就可以完成更多工作。

缩短交货时间所面临的挑战

但是,缩短交货时间并非轻而易举之事。众多挑战和困难在与 此目标抗衡,包括:

- *模型导入、准备和更改中的冲突*使得初始准备刀轨模型 难上加难,因而也不得不在流程晚期接受姗姗来迟的设 计更改
- *创建优质刀轨所遇到的困难*使得刀轨多次迭代,需要手 动修改刀轨并手动对加工件进行精加工
- *不可信赖的G 代码虚拟验证*意味着,在审核基于文本的 机床代码过程中必须投入手动作业

缩短交货时间所面临的机遇

除以上说到的挑战以外,车间也可以抓住以下机会来实现此目 标,包括:

- *利用* 3D *打印进行生产*,为更快、以更低成本生产和交付 零件提供途径
- *采用机器人管理与机加工*为实现更高的质量和灵活性提 供自动化
- *使用工业物联网获得制造见解*,让加工设备的数据可供 使用,为流程改进带来可见性

• **标准化、数据控制和重用**可以加快优质而可靠的刀轨的 形成

集成式加工生态系统

新技术,尤其是软件应用程序的集成式加工生态系统,为解决 缩短交货时间所面临的挑战和机遇提供了途径。

- *导入几何体的强大CAD 工具*为机械师准备模型提供了恰 当的功能
- CAD-CAM-CMM **集成式套装软件**避免了企业转换各种模 型的需求
- *模型驱动的加工流程*让机械师在工作的同时没有设计更 改的后顾之忧
- *对生产效率和自动化进行编程*,可以利用智能化基于特 征的刀轨, 便于适应更改
- **管理加工模型和数据**为设计模型、制造模型等等提供了 安全统一的真实数据存储库

车间的运转并非轻而易举之事。但是,采用正确的技术,却可 以化繁为简、有利可图。

© 2017 LC-Insights LLC

Chad Jackson 是 Lifecycle Insights 的一名分析 师、研究员及博客作者,提供工程设计方面的 深刻技术见解, 涉猎领域包括 CAD、CAE、 PDM 和 PLM 等。

chad.jackson@lifecycleinsights.com

数控加工研究的生命周期与统计数据

数控加工研究

数控加工研究研究了现代化车间的业务目标、实践策略以及各 种技术。

2016 年 9 月到 10 月之间,Lifecycle Insights 对 215 名调查者展开 研究,评估了现代化车间采用的策略,特别关注了他们的业务 目标、常用惯例以及所用技术。

参与调查的人数总计 215 名。但此项研究的结果是以其中 177 名 参与者的回答为基础的,不包括软件供应商、服务提供商和系 统集成商。

此项调查研究的参与者涉及各行各业。调查者占据行业比例最 高的包括: 48%为航空航天及国防行业, 24%为工业机械行业, 24% 为汽车行业,23% 为高科技、电子和消费品行业,19% 为能 源设备(石油和天然气)行业,18%为建筑、农业或重型机械行 业。参与者并不受到某一个行业选择的局限,因为供应商可能 服务于多个行业。

参与调查的人员所服务的企业收入范围跨度较广,包括:74%的 企业收入少于一亿美元,15%的企业收入介于一亿美元与十亿美 元之间,11%的企业收入超过十亿美元。

