

Troubleshooting torsional vibration challenges with rotating machinery

Unestricted © Siemens 2020

Where today meets tomorrow.

Agenda:

Non stationary phenomena

Practical examples Order tracking Torsional vibrations Angle domain Simcenter (Testing) solutions Customer examples

Noise, vibration and durability of machines Why are rotating components "different"?

A systematic approach: source – transfer – receiver

Unrestricted © Siemens 2020

Page 5

Unrestricted © Siemens 2020

Page 6

Waterfall and Colourmap

.049

Unrestricted © Siemens 2020

Page 10

Siemens Digital Industries Software

Orders and Resonances

Relation between frequency and order

Trace Values

500

MAXx_X = 39.67 Hz MAXx = 0.2382 [g]

Correlate vibration/noise with rotational speed

« n-th order » = peak in FFT at a frequency = n x rotational frequency

- 1st order = 2400/60 (Hz) x 1 = peak around 40 Hz
- 2nd order = 2400/60 (Hz) x 2 = peak around 80 Hz

How to measure RPM?

Connected to Engine coder or Starter wheel

Agenda:

Non stationary phenomena Practical examples

Order tracking Torsional vibrations Angle domain Simcenter (Testing) solutions Customer examples

Connected shafts

Connected shafts

Fan blades

Fan spins @ 600 rpm

What is the blade pass frequency?

What is the main order in the noise?

Fan spins @ 600 rpm 600 rpm = 10Hz (shaft) 6 blades = **60Hz** peak in mic

Blade passing frequency

Blade passing frequency depends on rpm !

6th order is independent from rpm

Gear

Gear spins @ 600 rpm

Gear has 86 teeth

What is the main order?

Gear spins @ 600 rpm

600 rpm = 10 Hz (shaft)

86 teeth = 86^{th} order = **860Hz** peak

Gear meshing frequency

If \neq 860Hz => transmission error

Connected gears

Gear 1 spins @ 600 rpm and has 13 teeth connected to gear 2 with 8 teeth

What is the main order of gear 2?

Gear 1 spins @ 600 rpm

600 rpm = 10 Hz (shaft)

Gear 2 spins @ 13/8 = 16.25Hz

Order **1.625** (compared to main shaft)

Gear meshing frequency ?

16.25 * 8 = 10 * 13 = **130 Hz**

Gears and prime numbers ...

	1	2	3	4	5	6	7	8	9	10
1	11	12	13	14	15	16	17	18	19	20
	21	22	23	24	25	26	27	28	29	30
and a second sec	31	32	33	34	35	36	37	38	39	40
	41	42	<mark>43</mark>	44	45	46	47	48	49	50
	51	52	53	54	55	56	57	58	59	60
	61	62	63	64	65	66	67	68	69	70
	71	72	73	74	75	76	77	78	79	80
	81	82	83	84	85	86	87	88	89	90
	91	92	93	94	95	96	97	98	99	100

Often – a meshing gear pair will have a prime number of teeth on one or both gears....

If two gears share a common factor, then the same teeth will engage more frequently, leading to wear & damage.

How many rotations will Gear1 rotate before the same two teeth mate again?

Gear1: 60	Gear1: 65
Gear2: 30	Gear2: 53
Answer: 1	Answer: 53
rotation	rotations!

Combustion engine

Combustion engine

Unrestricted © Siemens 2020

Page 22

Electric motor

Transmission Which issues can we detect?

Transmission Order analysis

Transmission Order analysis

SIEMENS Ingenuity for life

2900.00 25.00 Meshing Sidebands TACH:9999:+RX (T1) order Ľ, ер Б 60.00 900.00 Hz 5000.00 0.00 VIBR:2:+Z (CH2)

Sideband level variation with RPM and load in real life

Root-cause amplification possible due to structural resonances

Siemens Digital Industries Software

Bearings What causes bearing defects?

Bearings Order analysis

 $\rm N_{\rm B}=\rm Number$ of balls

 $\beta = \text{Contact}$ angle

Bearing order	Cause	Mathematical frequency	Empirical frequency
Ball Pass Frequency Outer (BPFO)	Outer race defects	$BPFO = RPM \cdot \frac{N_B}{2} \left(1 - \frac{B_D}{P_D} \cos(\beta) \right)$	$BPFO = 0.4 \cdot N_B \cdot RPM$
Ball Pass Frequency Inner (BPFI)	Inner race defects	$BPFI = RPM \cdot \frac{N_B}{2} \left(1 + \frac{B_D}{P_D} \cos(\beta) \right)$	$BPFI = 0.6 \cdot N_B \cdot RPM$
Ball Spin Frequency (BSF)	Rolling element defects	$BSF = RPM \cdot \frac{P_D}{B_D} \left(1 - \left(\frac{B_D}{P_D} \cos(\beta)\right)^2 \right)$	-
Fundamental Train Frequency (FTF)	Cage defects	$FTF = RPM \cdot \frac{1}{2} \left(1 - \frac{B_D}{P_D} \cos(\beta) \right)$	$FTF = 0.4 \cdot RPM$

Bearings Order analysis

- Pitch diameter = 1.548 inch
- Ball diameter = 0.3125 inch
- Number of balls = 9

 $N_{\rm B} = Number of balls$

 $\beta = \text{Contact}$ angle

Ingenuity for life

SIEMENS

RPM	BPFO (Hz)	BPFI (Hz)	BSF (Hz)	FTF (Hz)
100	6.077258	8.922742	3.979451	0.675251
500	30.38629	44.61371	19.89726	3.376254
1000	60.77258	89.22742	39.79451	6.752509
1500	0 - 3 6/6	0 - 5354	0 - 2387	0 - 0.405
2000	0 = 3.040	0 = 3.334	0 - 2.307	0 = 0.403
2500	151.9315	223.0685	99.48628	16.88127
3000	182.3177	267.6823	119.3835	20.25753
3500	212.704	312.296	139.2808	23.63378
4000	243.0903	356.9097	159.178	27.01004

Agenda:

Non stationary phenomena Practical examples Order tracking

Torsional vibrations Angle domain Simcenter (Testing) solutions Customer examples

Fixed sampling for runups?

Fixed sampling: provides global overview

- Basic order analysis (limited maximum order and order resolution)
- Not well suited for fast runups and/or detailed analysis
- High orders are smeared in frequency domain
- At low RPM, no good distinction between orders
- Powerful for measuring resonances

SIEMENS

Fixed sampling vs synchronous order tracking

Fixed sampling: provides global overview

- Basic order analysis (limited maximum order and order resolution)
- Not well suited for fast runups and/or detailed analysis
- High orders are smeared in frequency domain
- At low RPM, no good distinction between orders
- Powerful for measuring resonances

Order tracking: allows accurate order analysis

- High orders, fine order resolution
- Fast runups
- Always good distinction between orders
- Non precise resonance measurements

Unrestricted © Siemens 2020 Page 32

Siemens Digital Industries Software

SIEMENS

Fixed sampling vs synchronous order tracking

Unrestricted © Siemens 2020

Page 33

Fixed sampling vs synchronous order tracking

Narrowband Fixed sampling

- Constant sampling frequency
- Frequency spectra and orders

- Global overview
- Investigates harmonics vs. resonances
- Less computationally intensive
- Higher channel counts

Synchronous Order Tracking

- Sampling at constant angle increments
- Order spectra and orders

- Accurate order analysis
- Separates closely spaced orders at low rpm's
- High orders, fine order resolution
- Fast run-ups

Why not using both at the same time?

Agenda:

Non stationary phenomena Practical examples Order tracking

Torsional vibrations

Angle domain Simcenter (Testing) solutions Customer examples

Torsional vibrations

Unrestricted © Siemens 2020

Page 36

How to measure those speed variations?

Unrestricted © Siemens 2020

Page 37

How to measure those speed variations? Analog vs. digital pulse detection

How to measure those speed variations? Magnetic pickup sensors

- © Easy to instrument
- Sensor price
- © Gears often part of standard component
- © No external power required
- Pulses per revolution not flexible, equal to # gear teeth
- Sensitive to teeth dimensions, manufacturing tolerances

How to measure those speed variations? Optical sensors

- Easy instrumentation, on any shaft or gear wheel
- High pulse rates, depends on zebra tape
- 8 Sensitive to ambient light
- 8 Zebra tape defects

Unrestricted © Siemens 2020

Page 40

How to measure those speed variations? Incremental Encoders

http://www.heidenhain.com/en US/products/rotary-encoders/

Three output signals:

- ✓ Square wave outputs
- Quadrature square wave outputs
- Single pulse/rev as absolute reference
- Extremely accurate
- Extremely high number of pulses
- Includes direction of rotation

Complex instrumentation
Mass loading

Very convenient when the instrumentation can be part of the test bench

Unrestricted © Siemens 2020

Siemens Digital Industries Software

Agenda:

Non stationary phenomena Practical examples Order tracking Torsional vibrations Angle domain

Simcenter (Testing) solutions Customer examples

What is Angle Domain analysis? Application examples

variation of combustion

Unrestricted © Siemens 2020

Siemens Digital Industries Software

What is Angle Domain analysis? Cylinder pressure analysis example

Gated analysis

• E.g. Gate 1 = Valve inlet

Gate 2 = Combustion

Gate 1

Gate 2

 Align phenomena with fixed angle offset

Page 45

Unrestricted © Siemens 2020

Siemens Digital Industries Software

What is combustion analysis? P-V diagram

What is combustion analysis? Mean Effective Pressure – IMEP / PMEP / NMEP

The IMEP abbreviation often refers to the Gross Indicated Mean Effective Pressure

 $IMEP = \frac{\Delta \alpha}{V_s} \sum_{n_{i1}}^{n_{i1}} p(i) \cdot \frac{dV(i)}{d\alpha}$

How much energy is my combustion delivering?

Pumping Mean Effective Pressure (PMEP)

 $PMEP = \frac{\Delta \alpha}{V_s} \sum_{n_{p1}}^{n_{p2}} p(i) \cdot \frac{dV(i)}{d\alpha}$

How much energy is lost during operation?

Net Mean Effective Pressure (NMEP)

How efficient is my engine control strategy?

Unrestricted © Siemens 2020

Page 47

Agenda:

Non stationary phenomena Practical examples Order tracking Torsional vibrations Angle domain **Simcenter (Testing) solutions**

Customer examples

Digital Transformation with a Holistic Digital Twin

Simcenter Portfolio Engineer innovation for rotating machinery performance

Rotating machinery

Time data acquisition and processing

Turbine testing

Torsional vibration analysis

Angle domain analysis

Simcenter Portfolio Engineer innovation for rotating machinery performance

Agenda:

Non stationary phenomena Practical examples Order tracking Torsional vibrations Angle domain Simcenter (Testing) solutions **Customer examples**

Noise, vibration and durability of machines Why are rotating components "different"?

Industrial pumps Signature testing - Vibration troubleshooting

"The tokens concept allows us to offer a variety of capabilities to the industry partners we work with, as the tasks and requirements differ from project to project."

Challenge

- Troubleshoot a wide range of noise and vibration problems on pumps, valves, actuators..
- Better understand the underlying phenomena
- Worldwide standardization of tools used

Solution

- Simcenter SCADAS Recorder & Simcenter Testlab
- Tokens based licensing for worldwide sharing of resources

- 30% investment saving thanks to single tool for routine measurements & advanced engineering
- 40% faster insight into problem root causes
- 35% efficiency gain via collaboration worldwide

Bearings SIEMENS Simcenter Testxpress analyzer – More efficient servicing @ end customer Ingenuity for Life

The Simcenter Testxpress software is so easy to use, customers are up and running within the hour.

Challenge

- More efficient and effective on-site interventions
- More systematic and detailed analysis of noise and vibration issues

Solution

- Application = troubleshoot noise and vibration issues in assembled product
- Product = Simcenter Testxpress FFT analyzer with envelope analysis

- Solve conflicts with end user OEM
- Envelope analysis points out the guilty part of the bearing
- Full frequency details available

High precision gears Simcenter Soundbrush – Objectively compare noise of different designs

Simcenter Soundbrush helps objectively comparing noise generated by the different components.

Challenge

- Dispute between OEM and supplier on the "guilty component" - risk liability claims
- Quickly and objectively compare different noise sources and different designs

Solution

- Application = quickly compare noise generated by different components
- Product = Simcenter Soundbrush

- Released from liability claims
- Real-time visual identification of different noise sources

Electrical motor

Operational modal analysis – End user complaint on vibration levels

The efficiency increase is incredible – using Simcenter Testlab Polymax, operational modal and batch reporting.

Challenge

- No in-house NVH experience on how to solve customer complaints on high vibrations
- Trial and error approach
- Inefficient reporting takes 2 days

Solution

- Application = reduce vibration levels and increase lifetime of mount brackets
- Product = Simcenter Testlab operational modal + Polymax and batch reporting

- Gain experience via ES technology transfer
- Systematic source transfer receiver approach leads to solution
- · Higher efficiency via batch reporting

Printing plate production machine

Simcenter SCADAS XS – Reduce time/cost for global servicing

Thanks to the Simcenter SCADAS XS, a typical intervention went from 1 week down to only 2 days.

Challenge

- How to avoid costly engineer travel time for simple troubleshooting task
- Need for mobile measurement equipment

Solution

- Application = local vibration troubleshooting by an operator, engineer stays @ HQ
- Product = Simcenter SCADAS XS with tablet and predefined test template

- Simcenter SCADAS XS is shipped
- Operator can do the test
- Engineer only analyzes the data

Moving from mass production to tailor-made machines requires full understanding of the dynamics.

Challenge

- Unexpected quality problems at certain operating speeds, machines run sub-optimal
- How to balance production speed vs. quality vs. energy efficiency

Solution

- Application = avoiding resonances that affect produced quality
- **Product = Simcenter Testlab modal analysis**

- Systematic understanding of dynamics in the machine that might affect quality
- Machines run more efficient

Thank you.

Frank Demesmaeker Business Development Manager Simcenter Testing Solutions

frank.demesmaeker@siemens.com