

Цифровые решения для тяжелого машиностроения

Содержание

- 1 Разработка сварных соединений в NX
- Разработка «классического» ТП сварки в TC Manufacturing
- Pазработка роботизированных процессов в Tecnomatix
- Симуляция процессов сборки и обслуживания

AGENDA

Пример изделия со сварными соединениями

МFE-HE101633.00/00-Ковш
МFE-HE100015/A;1-FASTRAC № X Проектирование сварных соединений в - 🔲 🗁 Сечения - ₩ MFE-HE100015/A;1-FASTRAC (По тяжелом машиностроении составляет MFE-HE10 + **V** MFE-HE100136/A;1-ENGINE MEE-HE1 ₩ WFE-HE100093/A;1-COOLING MFE-HE10 большую долю КТТП тяжелого MFE-HE10 MEE-HE10 MFE-HE10 MFE-HE10 MEE-HE10 машиностроения ■ MFE-HE100136/A;1-ENGINE Навигатор сборки MFE-HE100378/A;1-SUSPENSION MFE-HE100093/A;1-COOLING ₩ ₩FE-HE100959/A;1-BODYWORK MFE-HE101182/A;1-MAINFRAME MFE-HE100438/A;1-FRONT AXLE A ₩ MFE-HE101290/A;1-DECK WEIGHT E- ₩ MFE-HE101321/A;1-TRANSMISSION MFE-HE100354/A;1-FRONT LINKAGE MFE-HE100016/A;1-HYDRAULICS MFE-HE100090/A;1-ELECTRICAL MFE-HE101610/A;1-TOP_BUCKET_ASSM MFE-HE101611/A;1-HIGH_LOAD - **☑** MFE-HE101631/A;1-BUCKET_ASSM_H При Массивы компонентов + **☑** МFE-HE101633.00/01-Ковш ☑
☑ MFE-HE101634/A;1-SA_TOOTH x 6 ■ - ₩ MFE-HE101637/A;1-BALE_FORK ±-₩ MFE-HE101639/A;1-MAX_PENETRATION H-WA MFE-HE101641/A;1-BEVELAED_EDGE H-₩6 MFE-HE101642/A;1-WIDE_CLEANUP ±- ₩ MFE-HE101644/A;1-LOW_LOAD -

→

→

MFE-HE101660/A;1-KNUCKLE END TOP LINK -- ☑ 3 MFE-HE101661/A;1-HI-FLOW HYDRAULICS - 📝 🎯 MFE-HE101662/A;1-LOAD SENSING HYDRAULIC CONNECT --- ✓ 😭 MFE-HE101663/A;1-FRONT WEIGHT - ☑ MFE-HE101664/A;1-REAR DECK WEIGHT Отчет Зависимости

Проблемы при проектировании сварных соединений

Конструктор

Увеличение сроков разработки и изменения КД

Конструктор

Низкое качество КД сварных конструкций (швы только в чертежах)

Конструктор

В 3D-макете нет сварных швов, следовательно нет учета их массы в изделии

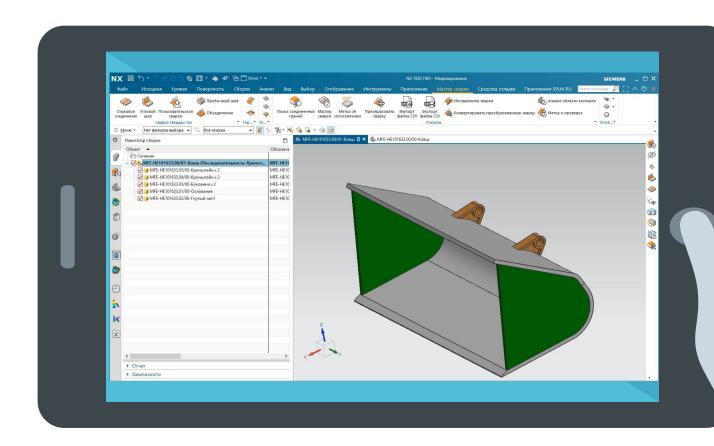
Технолог

Ручной расчет режимов обработки, норм времени и норм расхода материалов

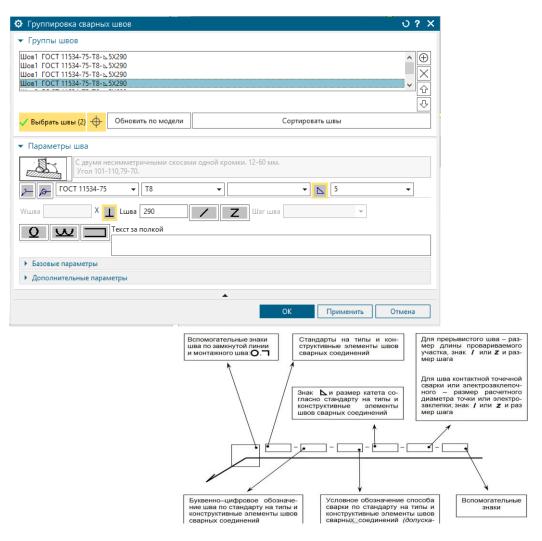
Технолог

Ручная разработка двумерных эскизов

Рабочий


Эскизы в ТП двумерные, не очень наглядные. Приходится вчитываться в текст технологии и читать чертежи

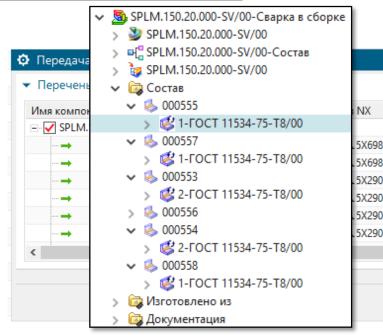
Создание сварных швов в NX


- Создание контейнера для швов в сборочной единице
- Создание швов в мастере сварки
- Создание сварных соединений по ГОСТ в утилите
- Импорт швов в Teamcenter

Создание сварных швов в NX (Обозначение сварного шва)

Сварное соединение - обозначение сварного соединения, применяется для внесения необходимой информации по ГОСТ о сварном шве.

В результате работы команды формируется контейнер в который помещаются все смоделированные объекты относящиеся к сварному шву. Вносятся недостающие и дополнительные атрибуты, происходит снятие доступных данных со смоделированных объектов, задание и расчет дополнительных параметров. Возможно формирование «пустых» контейнеров с записью на них необходимой информации для формирования отчетов и выносок.

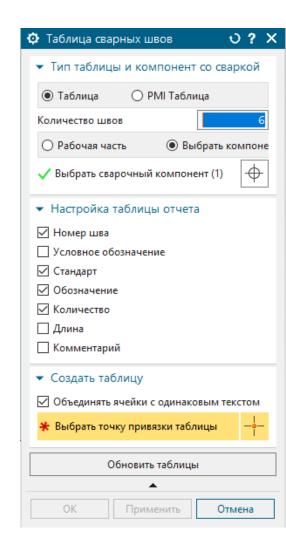


Создание сварных швов в NX (импорт швов в Teamcenter)

Публикация данных для передачи швов в ТС
При работе программы данные по атрибутам швов в NX
и ТС сопоставляются и выводятся в виде дерева в
диалоге, где корневые узлы соответствуют именам
компонентов со сваркой, а их дочерние объекты
сварочным швам.

Необходимо выбрать в дереве диалога компоненту NX, швы из которой нужно экспортировать\ обновить в ТС. Система с помощью информационных иконок показывает возможные состояния.

Иконка	Описание	Действие при экспорте
~	Швы сопоставлены. Данные полностью синхронизированы.	Пропустить.
→	Шов в ТС отсутствует.	Создать.
×	Швы сопоставлены. Данные полностью не синхронизированы.	Установить новое значение атрибутов.
?	В ТС имеенся шов, который не удается сопоставить ни с одним швом в NX.	Удалить.

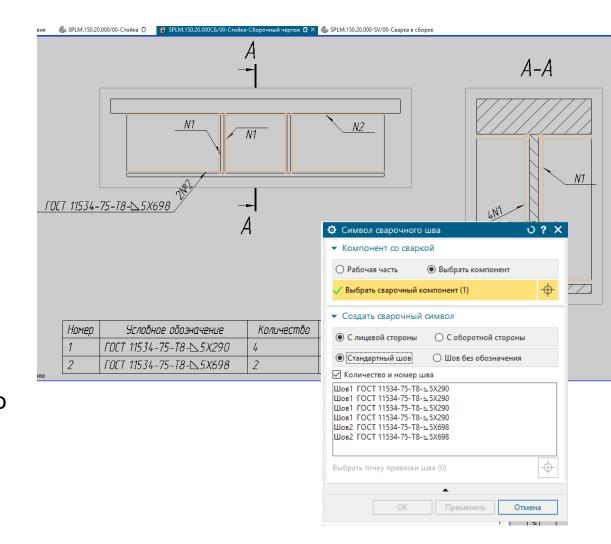

Создание сварных швов в NX (таблица сварных швов)

Программа позволяет создавать и обновлять таблицы сварочных швов. Таблицы могут быть созданы как в пространстве модели, так и на листе чертежа.

Для создания таблицы сварочных швов необходимо выбрать часть, где будет происходить поиск швов. Число найденных швов будет показано в диалоге. Перед выводом в таблицу одинаковые швы будут объединены. Затем нужно определить колонки для вывода в таблице и задать точку вставки.

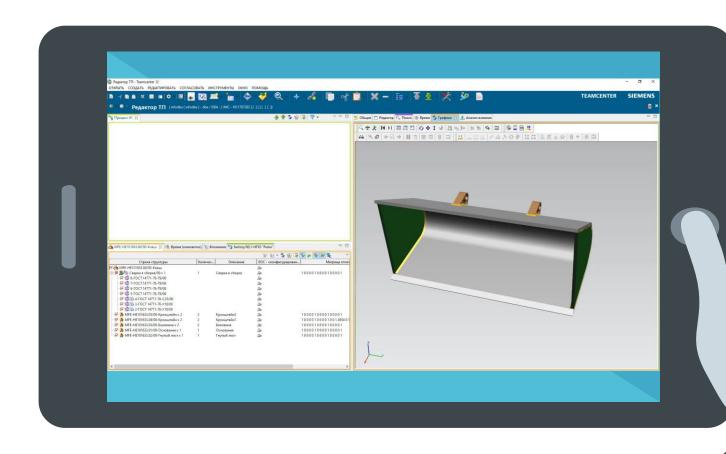
Номер	Условное обозначение	Количество	Длина
1	ΓΟCT 11534-75-T8-⊾5X290	4	290
2	<i>ΓΟΣΤ 11534-75-T8-</i> \ <i>5X698</i>	2	698

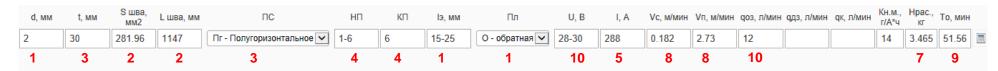
Номер	Стандарт	Оδозначение	Количес тво	
1	- ГОСТ 5264-80	C2-2X100/24	1	
2	1001 3204-00	C2X100		



Создание сварных швов в NX (обозначение сварного шва)

Обозначение сварного шва – создание выноски обозначения сварного шва.


Применяется для формирования обозначения сварного соединения в 3D модели с помощью PMI, или в чертеже. В качестве входных данных используются атрибуты внесенные командой Обозначение сварного соединения. В меню команды выводится ранее внесенная информация и предусматривается возможность настройки вывода полного и сокращенного обозначения сварного соединения.


Разработка технологии сварки в TC Manufacturing

- Создание техпроцесса
- Разработка операционного маршрута и переходов
- Распределение свариваемых деталей и швов по переходам
- Расчет режимов сварки
- Расчет норм расхода сварочных материалов
- Расчет нормы времени на операцию сварки

SIEMENS

Разработка технологии сварки в TC Manufacturing (расчет режимов сварки)

Последовательность расчета:

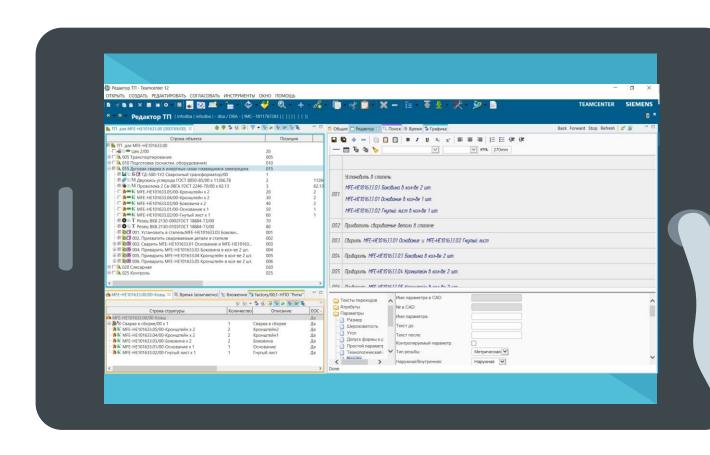
- 1. Параметры из классификатора св. проволоки
- 2. Параметры из сварного шва
- 3. Толщина металла и положение сварки вводится вручную
- 4. Количество проходов (по табл.)
- 5. Сила тока (по табл.)
- 6. Коэф-т к массе от положения (по табл.)
- 7. Масса шва и норма расхода проволоки (по формуле)
- 8. Скорость сварки и подачи проволоки (по формуле)
- 9. Основное время (по формуле)
- 10. Напряжение дуги (по ВАХ) и расход газа (по таблице)

Плог	шадь поперечного сечения шва для количества проходов сварки	расчета		Приложение 1			
	Свариваемый материал	Толщина металла, мм, до					
Ne		10	100	10	100		
позиции		I	Ілощадь попере	чного сечения, мм², до			
	2.00	первого	прохода	второго и последующих прох			
1	Углеродистые и низколе- гированные стали	10	30	40	50		
2	Высоколегированные и легированные стали	10	30	40	50		
3	Алюминий и алюминиевые сплавы	10	20	30	40		
4	Медь и медно-никелевые сплавы	10	15	25	35		
	Индекс	a	6	В	г		

Положение шва	Значение коэффи- циента
Нижнее	1.00
Полувертикальное (на-	1,00
клонное) Вертикальное, гор изон -	1,10
тальное Потолочное	1,20

Зависимость напряжения и расхода углекислого газа от силы сварочного тока						тока	
Сила сварочного тока, А	50÷60	90÷100	150÷160	220÷240	280÷300	360÷ 380	430 ÷450
Напряжение дуги, В	17-28	19-20	21-22	25-27	28-30	30-32	32-34
Расход СО2, л/мин	8-10	8-10	9-10	15-16	15-16	18-20	18-20

от положения шва в пространстве, диаметра сварочной проволоки и толщины металла				Приложение 4			Лист 1		
		TRUE LAW III	Диаметр сварочной проволоки, мм						
Номер позиции	Положение шва в пространстве	Толщина металла, мм, до	0,8	1,0	1,2	1,4	1,6	2,0	
		84-1-68	200	Расче	гное значен	ие силы то	ка, А	115	
1.	Нижнее	0,8	86	98	106	- T-	Augustina -	-	
2		1,0	86	98	106	-	-	-	
3		2,0	105	116	143	171	-	-	
4		3,0	108	122	148	179	-	-	
5	100	4,0	109	122	150	179	-	-	
6		5,0	-	164	178	218	252	290	
7		6,0	-	164	180	218	252	290	
8		8,0	-	170	185	220	258	300	
9	NOT ACCUMENT	10,0	- 1	170	185	220	260	300	
10		20,0	-	-	200	245	285	326	
11	Pite and the	30,0	-	-	230	270	320	360	
12	100	60,0	-	- 0	250	295	345	395	
13	Harris San	80,0	-1	- N	-	330	385	440	
14		160,0			-	358	418	480	
15	Вертикальное	0,8	77	88	95	-	-	-	
16		1,0	77	88	95		-	-	
17		2,0	95	104	129	154	-	122	
18		3,0	97	110	133	161	-	-	
19		4,0	98	110	135	161	-	-	
20		5,0	-	148	160	196	227	261	
	Индекс		a	б	В	Г	Д	e	


Источники:

- Общемашиностроительные укрупнённые нормативы времени на дуговую сварку в среде защитных газов. М, 1989
- Нормирование расхода материальных ресурсов в машиностроении: Справочник, том 2, Под редакцией Покараев Г.М., М. Машиностроение, 1988

Разработка технологии сварки в TC Manufacturing (эскизы)

- Создание в визуализаторе снепшотов с заметками
- Формирование комплекта ТД
- Просмотр технологического процесса в браузере (EWI)

Преимущества автоматизации проектирования сварных соединений

Конструктор

Снижение сроков разработки КД

Конструктор

Выше качество конструкторской документации, меньше ошибок

Конструктор

Учет массы швов в изделии

Технолог

Автоматический расчет режимов обработки, норм времени и норм расхода материалов

Технолог

Автоматизация при разработке трехмерных эскизов

Рабочий

Наглядность технологического процесса

Преимущества автоматизации проектирования сварных соединений

Разработка конструктором трехмерных представлений сварных швов в макете резко повышает скорость и качество КТТП на последующих этапах.

В планах развития – работа с условным представлением сварных швов

Симуляция технологических процессов в Tecnomatix

Области применения симуляции процессов

Роботизированные комплексы

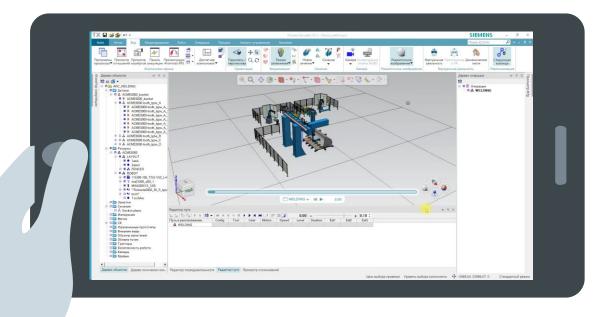
• Весь комплекс задач от достижимости до времени цикла работы, генерация управляющих программ, виртуальная пусконаладка

Общая сборка

• Обеспечение возможности сборки изделия в производстве в соответствии с подготовленным техпроцессом

Эргономика ручных операций

• Анализ процесса с точки зрения требований эргономики, исключение риска производственных травм из-за недостатков техпроцессов



Оптимизация производства

 Обеспечения необходимых показателей работы производства, цеховая логистика, организация материалопотока

Симуляция РТК и виртуальная пуско-наладка

- Детальная модель технологического процесса, выполняемого роботом
- Гарантия возможности выполнения операций с точки зрения достижимости, столкновений и времени цикла
- Виртуальная пусконаладка с учетом цеховой автоматизации (PLC-контроллеры, HMI, датчики)
- Исключение поломок
- Уменьшение простоя оборудования, необходимого для переналадки под другой тип деталей

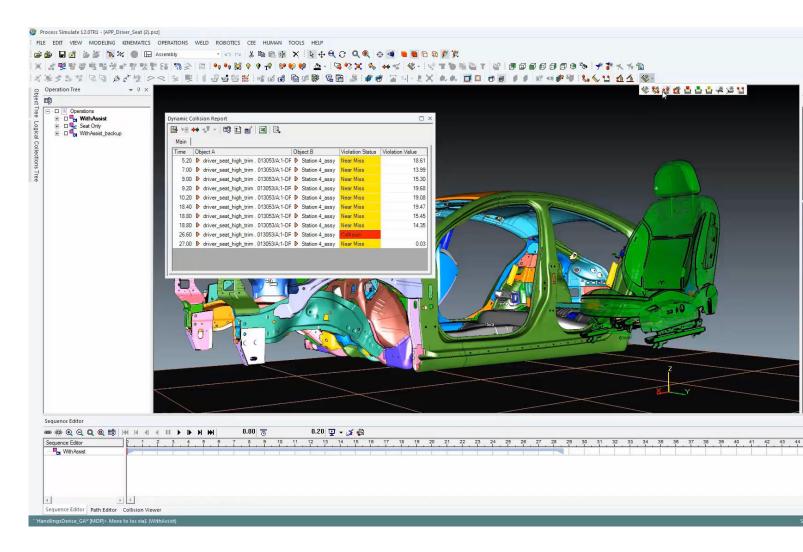
Программирование РТК в компании John Deere c применением **Tecnomatix**


70% СНИЖЕНИЕ ВРЕМЕНИ СОЗДАНИЯ ПРОГРАММ НА 50-70%

СОКРАЩЕНИЕ ВРЕМЕНИ ПРОСТОЯ PTK B 3 PA3A

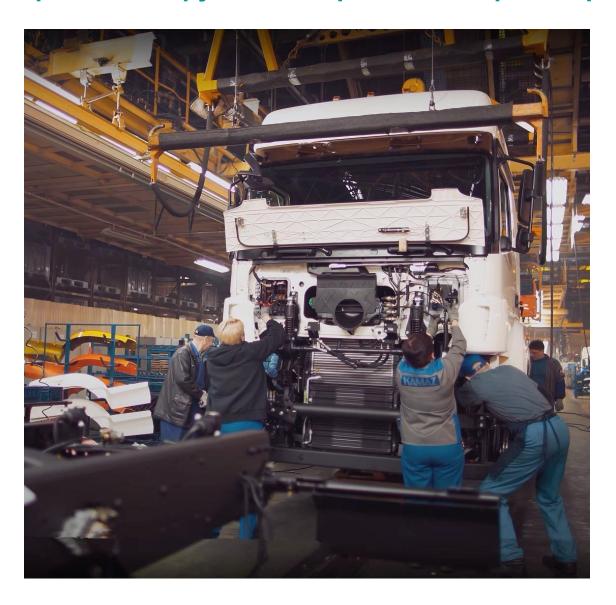
ОПТИМИЗАЦИЯ ПРОИЗВОДСТВА

Проверка сварочных процессов и подготовка УП



Общая сборка

Выявление проблем собираемости на этапе проработки техпроцесса


- Невозможность монтажа узла из-за ограниченного места
- Неверная или неисполнимая последовательность операций
- Неприменимый в данных условиях инструмент/приспособления

Корректировка техпроцесса или изменение конструкции до начала производства, когда это станет слишком дорого

Эргономика ручных операций – сборка в производстве

Сборка в производстве

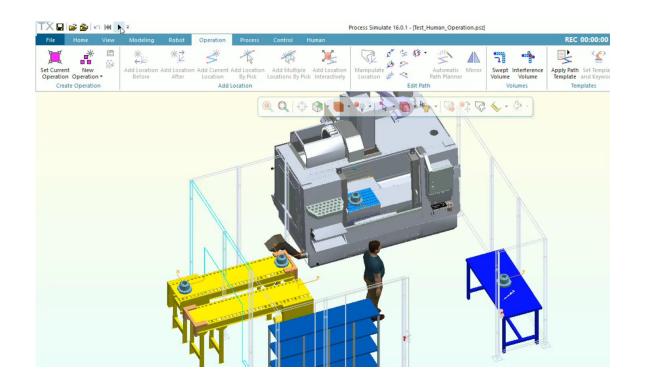
- Идентификация проблем с собираемостью
- Повышение производительности
- Соблюдение нормативов
- Снижение риска травм и заболеваний

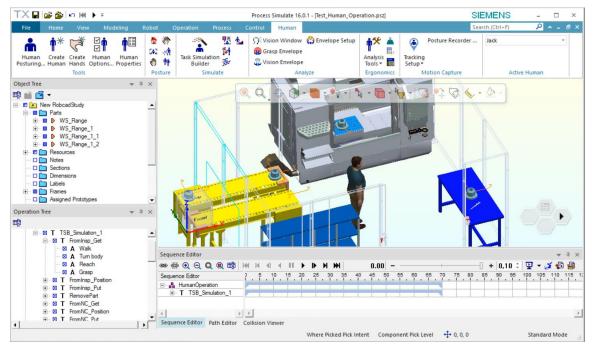
Фокус симуляции:

- Технологическое оснащение
- Последовательность операций
- Удобство сборщика
- Повторяющиеся операции

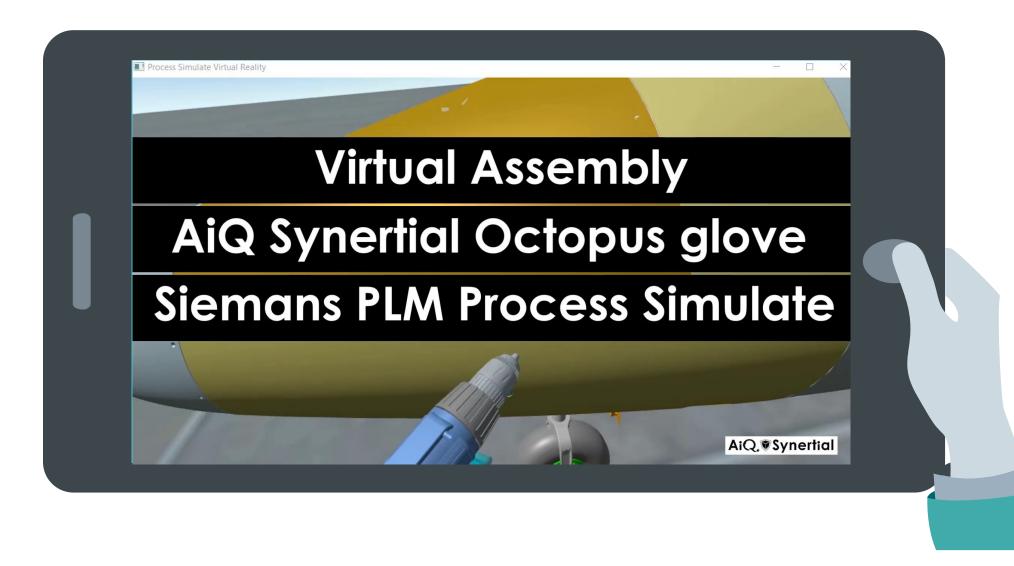
Эргономика ручных операций – ТОиР

Эксплуатационная технологичность


- Разработка и проверка перечня регламентных работ
- Проверка удобства обслуживания на этапе разработки
- Подготовка материала для инструкций


Технология обслуживания существенно отличается от технологии сборки

Симуляция работы человека в производстве


Проверка возможности рабочего выполнить ТП

Интерактивная проверка процессов в виртуальной реальности

Оптимизация производства и логистики

Симуляция длительного периода (неделя-месяц-год)

- Расчет производительности производства
- Оценка загрузки оборудования и персонала
- Оптимизация поставок комплектующих
- Накопители и НЗП
- Учет влияния случайных факторов
- Организация и управление производством

Вопросы?

Контакты

Коптев Алексей Консультант по PLM-решениям Teamcenter Manufacturing

E-mail <u>alexey.koptev@siemens.com</u>

Медведев Владимир Консультант по Tecnomatix

E-mail v.medvedev@siemens.com

