

Address NVH integration issues from concept to validation through modelbased development (MBD) Wednesday January 23, 2019

Vehicle NVH Innovation Area Challenges

SIEMENS Ingenuity for life

Vehicle Electrification

200+ (H)EV models. Increased engineering complexity

Visiongain, NVH market report

Unrestricted © Siemens AG 2019 Page 2 2019.01.23

Analyze electrical and mechanical design

Vehicle NVH Innovation Area Challenges

Driveline integration

Low-frequency torsional vibrations are amplified in the driveline

"Predicting systems behavior upfront significantly reduces the workload and allows us to focus efforts and resources on other priorities, such as brand image and value"

S. Watanabe Powertrain NVH, Honda R&D

Unrestricted © Siemens AG 2019 Page 3 2019.01.23

Ensure smooth vehicle integration

Vehicle NVH Innovation Area Challenges

SIEMENS Ingenuity for life

Balancing performances

Conflicting performance characteristics (NVH, energy management, drivability)

Unrestricted © Siemens AG 2019 Page 4 2019.01.23 "Balancing CO2 reduction requirements and increasing customer expectations constrains the feasible solutions zone, requiring an integrated approach"

Tom McCarthy Chief engineer PT Research & Advanced Engineering, Ford

Balance NVH with other attributes

Current vehicle NVH engineering process Challenges

SPECIFICATION **DESIGN / ENGINEERING** VALIDATION CERTIFICATION TROUBLESHOOTING Mechabronical Target setting and benchmarking Many new vehicle architectures and variants Test-based validation New fuel economy & safety regulations Hybrid Mer Issues occur in prototype stage Limited design space for solutions • Long time to solve • 3D **NVH CAE engineering** Starts late in the process ٠ Needs detailed geometry ٠ Limited space for design changes ٠ Unrestricted © Siemens AG 2019

SIEMENS

Ingenuity for life

Siemens PLM Software

Page 5 2019.01.23

٠

٠

Addressing these challenges requires an integrated approach

What if we could add Model-Based Development to the process?

Unrestricted © Siemens AG 2019 Page 6

From CAD-centric to System-centric thinking

From CAD-centric to System-centric thinking

NVH System Engineering Process deployment for NVH Investigation

SIEMENS Ingenuity for life

NVH System Engineering How to incorporate 3D dynamics in system simulation

Suspension and Tire

Unrestricted © Siemens AG 2019 Page 10 2019.01.23

Siemens PLM Software

SIEMENS

NVH System Engineering Low-Frequency Booming Noise

Unrestricted © Siemens AG 2019 Page 11 2019.01.23

Siemens PLM Software

SIEMENS

NVH investigation and improvement of a rear wheel drive vehicle SIEMENS Using a model-based approach combining test and simulation methods

- Reverse engineer competitor vehicle to understand driveline contributions for lock-up booming noise and vibrations
- Static and dynamic characterization of components based on full vehicle measurements

Model-based approach by combining test and simulation

Reverse engineering of CPVA

Full vehicle modeling

- Using testing methods for gaining insight and obtaining parameters for modeling •
- Using simulation to validate and update the sub-systems to create a full vehicle model

"The Simcenter Engineering team smartly combined operational measurements to gain insights into the vehicle behavior, noise sources and noise transfer paths, with simulation models to build a full vehicle model. We were able to evaluate the performance of the CPVA and reduce lock-up booming noise."

Unrestricted © Siemens AG 2019 2019.01.23 Page 12

Siemens PLM Software

Automobili Lamborghini

Creating a new driveline concept design using Simcenter Amesim

- Designed the torsional vibration characteristic of the Aventador LP700-4 driveline
- Supported torsional vibro-acoustic driveline optimization

Designing the Aventador LP700-4 torsional vibro-acoustic driveline

Torsional behavior of the driveline

- · Model easily complex dynamic systems using prepackaged components
- · Generate models in function of the phenomena the user intends to investigate

"The true power of Simcenter Amesim is demonstrated by how easy it is to evaluate different driving conditions, software or hardware changes and even different configurations".

Ing. Claudio Manzali, R&D

Unrestricted © Siemens AG 2019 Page 13 2019.01.23

NVH System Engineering Engine re-start shock for PHEV

Unrestricted © Siemens AG 2019 Page 14 2019.01.23

Siemens PLM Software

SIEMENS

Honda Motor Company Resolve hybrid engine restart vibrations

- Solve hybrid engine restart vibrations
- Take into account the entire powertrain restart process and allow for varying in-cylinder pressure
- Reduce time to market

Reduce vibrations at restart of hybrid engines while balancing fuel economy and performance

#4 In-cylinder

Test methods such as transfer path analysis, impact testing, modal analysis, and more

	890	<u> </u>	NA	h	he	h	<u>A</u>
#2 In-cylinder			irst combo	istion			
		W	h	h		A	A

Results of in-cylinder pressure at engine restart using 1D prediction model

- · Integrate the testing process for data acquisition and validation
- Build integrated engine and vehicle models for combustion, mechanics and controls

"Thanks to the Simcenter engineering expertise, we predict systems behavior upfront. The workload afterwards is significantly reduced, which allows us to focus our efforts and resources on other priorities, such as brand image and value." Satoshi Watanabe, Model-Based Design for Powertrain NVH

Unrestricted © Siemens AG 2019 Page 15 2019.01.23

NVH System Engineering Gear Rattle

Shift Shock	Rattle assessment	Rattle propagation			
Clunk	θ,	The second			
Judder	Low Frequency excitation	Broadband noisePropagation through			
Booming	• Torque zero passing in Idle gears → impact	transmission casing and mounts			
Squeal	θ_{s}	States			
Engine					
		Rattle metrics			
Re-start	Rattle-free design	Rattle metrics			
Re-start <u>1D Rattle</u>	Rattle-free design Focus on reducing losses, makes rattle-free design harder	Rattle metrics Difficult to objectively quantify rattle			
Re-start <u>1D Rattle</u> 2D Rattle	Rattle-free design Focus on reducing losses, makes rattle-free design harder Bearing losses Oil churning losses in Idler gears	Rattle metrics Difficult to objectively quantify rattle			
Re-start <u>1D Rattle</u> 2D Rattle Switching & slotting effects	Rattle-free design Focus on reducing losses, makes rattle-free design harder Bearing losses Oil churning losses in Idler gears Oil churning losses in Idler gears	<text></text>			

Unrestricted © Siemens AG 2019 Page 16 2019.01.23

NVH System Engineering Gear Rattle

SIEMENS Ingenuity for life

Shift Shock	Rattle assessment	Rattle propagation			
Clunk Judder Booming Squeal	 System simulation driveline modeling Extract gear contact forces Detailed loss models in function of physical parameters Virtual troubleshooting 	 structural FE models and acoustic models Coupling with gear forces for target prediction 			
Engine					
Re-start	Rattle-free design	Rattle metrics			
<u>1D Rattle</u> 2D Rattle Switching &	 Multi-phase CFD analysis Coupling with lubrication modeling for boundary condition 	 Subjective-objective correlation Sound quality analysis 			
slotting effects	Balancing losses - rattle	Metric development			

From CAD-centric to System-centric thinking

Virtual Validation System-in-the-loop testing

System-in-the-loop testing in support of Model-Based Development Consistent testing for shorter development cycle

Unrestricted © Siemens AG 2019

Page 19 2019.01.23

Virtual Validation Hardware-in-the-loop testing

SIEMENS Ingenuity for life

HiL for HEV control pre-calibration for MAB

Unrestricted © Siemens AG 2019 Page 20 2019.01.23

From CAD-centric to System-centric thinking

Validation Enhance test-based troubleshooting

Test, simulation, CAN/ECU overlaid for root cause analysis

Unrestricted © Siemens AG 2019 Page 22 2019.01.23 SIEMENS Ingenuity for life

Combine <u>test data</u> analysis and <u>system simulation</u> to

- Tackle the issue in the driveline
- Reuse in next generation vehicle design

Additional insight by using simulation model

Validation Synchronizer gear rattle at low frequencies

Solution

Shift Shock Detailed MBD model of the transmission Combined test and system simulation troubleshooting . Unexpected NVH issue can be included in next generation design Judder verification Booming Squeal Engine Lamps **Re-start 1D Rattle** Gearbox Vibration low temperature 2D Rattle Switching & slotting Came effects Drivability

Unrestricted © Siemens AG 2019

Page 23

Clunk

2019.01.23

Rattle OFF

Rattle ON

Siemens PLM Software

K: Frequency (Ma)

From CAD-centric to System-centric thinking

Target Setting and Benchmarking Why Multi-Attribute Balancing

<u>Challenge</u>: balance conflicting attributes \rightarrow modifying the vehicle in refinement stage is too costly

 Better energy efficiency is required → Some measures often degrade NVH performances (downsizing engine, idling stop, lower speed at Lock Up, weight saving,...)

Solution:

- Deploy multi-attribute testing campaign for target setting
- Develop unified modeling approach for performance balancing at early stage

Gear cha

Zero th

Unrestricted © Siemens AG 2019 Page 25 2019.01.23

SIEMENS Ingenuity for life

Target Setting and Benchmarking

Multi-attribute testing

Page 26

2019.01.23

Siemens PLM Software

SIEMENS

Target Setting and Benchmarking

Unified modelling approach

Mitsubishi Motor Company

Technology development to allow multi-attribute evaluation

- Satisfy multiple performance at the early stages of vehicle development
- Evaluate design parameters and control settings on different attributes
- Reduce risk of issues during validation

Multi-attribute balancing of NVH, drivability and energy management

Full vehicle model with scalable complexity

Multi-attribute balancing tool

- · Generate a unified system simulation environment to evaluate different performances
- Build a library of full vehicle models and a centralized data management tool

"Simcenter Engineering services helped us to apply performance balancing at the early stages of development, contributing to prevent development reworking."

Paper at SAE

Conclusions Added value of Model-Based Development for NVH

SPECIFICATION **DESIGN / ENGINEERING** VALIDATION CERTIFICATION TROUBLESHOOTING Target setting and benchmarking Mechabronical Shortens testing phase Multi-attribute target setting and • Validation evaluation Get insight in rotational dynamics Cascade system targets down to Reduce prototype troubleshooting time components NEW 1**D** Virtual Verification Verify component performance at system level • before prototype is available **NVH System Engineering** Frontload design choices Feasible even without detailed geometry Unrestricted © Siemens AG 2019 Page 29 2019.01.23

Siemens PLM Software

SIEMENS

Aisin AW Strengthening its position as technology partner

- Gained 50 percent time reduction when troubleshooting a new NVH issue
- Significantly reduced overall development time
- Recognized as technology partner of automotive OEMs, resulting in competitive advantage

- Deploy a full vehicle model based approach for the prediction and elimination of clutch judder
- Employ full vehicle modeling approach combining test, 3D and 1D simulation methodologies

"Many NVH techniques we learned from Simcenter Engineering are now part of our standard development process, such as transfer path analysis."

Hiroki Tsuji, Group Manager, Core Component Engineering Department

Thank you! Want to know more?

Unrestricted © Siemens AG 2019 Page 31 2019.01.23