[image:]

[bookmark: _GoBack]
VLSI testing
Exercises
[image:]
LAB 1: ATPG and fault simulation (1)
Exercise 1: Deterministic ATPG (path sensitization) for fan-out free circuit
a. Determine the number of all potential fault sites for the circuit shown in Figure 1.
b. Use path sensitization to run ATPG for f/1 and h/1 stuck-at faults for the circuit shown in Figure 1.
c. Given resultant test vectors, determine the expected value on the output (line z).
d. Save test patterns in a format provided by the description file for combinational designs [Appendix 1].
e. Run fault simulation [Procedure 3] using the test patterns obtained earlier and analyze the performance of the test (including fault coverage) [Procedure 4]. Next, analyze the report regarding detected faults and indicate the target fault.
f. Generate test patterns using Tessent FastScan [Procedure 2] and analyze the performance of the test [Procedure 4].
g. [image:]Compare the obtained results.

[image:]
Figure 1: Circuit for exercise 1

Exercise 2: Deductive fault simulation
a. Given the circuit shown in Figure 2, use deductive fault simulation for test patterns 01010, 11011, 00110 to determine a list of faults detected on its primary output z.
b. Run fault simulation by using Tessent FastScan [Procedure 3].
c. Analyze the fault report [Procedure 4] and indicate detected faults.
d. Compare the obtained results.

[image:]
Figure 2: Circuit for Exercise 2

[image:]LAB 2: ATPG and fault simulation (2)
Exercise 1: Test set minimization
a. Create a fault table for all stuck-at faults in the circuit of Figure 3.
b. Determine equivalent fault classes.
c. Create a reduced fault table by removing all faults but the first member of each class and undetectable faults.
d. Select a minimal set of tests to cover all detectable faults.
e. Run fault simulation for the selected set of test set by using Tessent FastScan [Procedure 3].
f. Generate test patterns using Tessent FastScan [Procedure 2] and compare the performance (the number of test patterns and test coverage) of both test sets [Procedure 4].

[image:]
Figure 3: Circuit for exercise 2
[image:]
[image:]LAB 3: ATPG and fault simulation (3)
Exercise 1: Removing redundancy from a circuit with undetectable faults
a. Run ATPG for the circuit of Figure 4 using Tessent FastScan [Procedure 2].
b. Simulate the circuit using ModelSim [Procedure 5].
c. Analyze the performance of the test [Procedure 4] and indicate the list of undetected faults.
d. Use the redundant fault class report as guidance and modify the circuit netlist to delete any redundancy in the circuit.
e. To assure that your modification did not change the circuit functionality, simulate the modified circuit using ModelSim [Procedure 5] and compare the results.
f. Compare complexity (the number of gates and connections) of circuits and test results for the circuit with redundancy and after modifications.

[image:]

Figure 4. Circuit for exercise 1

Exercise 2: Test point insertion
a. For the circuit shown in Figure 4, insert control and observation points to increase test effectiveness without removing redundancy.
b. Analyze the performance of the test [Procedure 3] and indicate the list of undetected faults [Procedure 4].
c. To assure that your modification did not change the functionality, simulate the modified circuit using ModelSim [Procedure 5] and compare the results.
d. Compare complexity (the number of gates and connections) of the circuits and test results for the circuit with redundancy and after modification.

LAB 4: Pseudorandom testing
[image:]Exercise 1: LFSR as pseudorandom test pattern generator
a. Draw Galois and Fibonacci LFSRs for the following characteristic polynomial: x4 + x1 + 1.
b. For these LFSRs generate the maximum length sequence with the initial state (seed) 0001.
c. Save the obtained states from Galois LFSR as test sets with the increasing number of test patterns (1.patt – contains state # 1; 2.patt - contains states # 1 and 2, 4.patt – contains states from # 1 to 4, 8.patt - contains states from # 1 to 8, 16.patt contains states from # 1 to 16) for circuit C1 (c1.v) according to the test vector description file [Appendix 1].
d. Run fault simulation (c1.run – invocation, c1.do – set of commands) [Procedure 3] for circuit C1 using the prepared test sets and present the resultant fault coverage (c1.log).

Exercise 2: Pseudorandom testing of combinational circuit
Write a function (for example in C++: /lfsr_cpp/lfsr.cpp), which allows generating a test pattern description file [Appendix 1] by using an LFSR with a given characteristic polynomial, a specific initial state and the length of a generated sequence.
Apply the above function (/lfsr_cpp/lfsr) to generate pseudorandom test pattern sets (# test patterns according to Table 1) for circuit c6288 (c6288.v). Assume that each LFSR stage is connected with a designated input of CUT. Select the proper primitive polynomial from Appendix 3.
Run fault simulation (c6288.run – invocation, c6288.do – set of commands) [Procedure 3] for the obtained test sets and circuit c6288 to analyze the performance of the test (fault coverage) [Procedure 3].
 Complete the Table 1 and present the resultant fault coverage as a function of the applied pseudorandom test patterns (see Figure 5).
Draw conclusions about the effectiveness of pseudorandom testing.
 (
Figure 5
:
 The e
ffectiveness of

generated patterns
)[image:] (
Table 1
:
 Test patterns statistics for exercise 2
)
[image:]

LAB 5: Design for testability (DFT)
[image:]Exercise 1: Basic scan insertion
Go to directory lab_5/ex_1. Notice that each step of this exercise has its own subdirectory and common directories are used for netlists, libraries, and reports.
a. In 0_lspec_synth synthesize design from RTL HDL description to gate level Verilog netlist using Leonardo Spectrum [Procedure 7].
b. In directory 1_scan invoke the Tessent Scan and insert 100 scan chains into synthesized netlist [Procedure 8].
c. Report and analyze the statistics.
d. Determine the number of simulation gates, the number of sequential elements in this circuit, and the number of scan cells.
Exercise 2: Scan and ATPG flow
Go to directory lab_5/ex_2. Notice that each step of this exercise has its own subdirectory and common directories are used for netlists and libraries.
a. In a manner similar to that of exercise 1, insert 4 scan chains into netlist cpu.v.
b. In directory 2_atpg invoke Tessent FastScan on the scan-inserted netlist (4 scan chains) and create test patterns (also in a parallel form).
c. Analyze ATPG messages and test coverage statistics.

[image:]LAB 6: Built-In Self-Test (BIST)
Exercise 1: BIST
Consider a BIST scheme shown in Figure 6 for combinational design C1 (CUT). An LFSR with the characteristic polynomial x3 + x2 + 1 and the initial state 111 has been deployed on the input side of C1 as a pseudorandom test pattern generator. Also, a MISR with the characteristic polynomial x3 + x2 + 1 and the initial state 000 has been employed as a test response compactor on the output side.
a. Follow the steps below to complete Table 2:
· Determine the LFSR maximum length sequence.
· Determine the fault-free signature.
· Determine signatures for faults A/0 and A/1.
b. Check if the above faults can be detected and explain why.
[image:]
Figure 6. BIST scheme for exercise 1
[image:]
Table 2. Signature report for exercise 1
LAB 7: Test compression
[image:]
We will use a non-scan RTL-level Verilog implementation of a simple 8-bit microcontroller. It is binary code compatible with the Microchip 16C57 microcontroller. This source code has been developed by Thomas Coonan and is publicly available at www.mindspring.com/~tcoonan (2011). According to the copyrights, it can be redistributed and/or modified in a source code form under the terms of the General Public License (GNU).
Exercise 1: Test pattern compression flow
Go to directory lab_7/ex_1. Notice that each step of the exercise has its own subdirectory, and common directories are used for netlists, libraries, and logfile reports.
a. In the 0_lspec_synth directory synthesize the model of the given microcontroller [Procedure 7]. Hint: use the ami05_worst.syn library and attach source files in the following order: alu.v, dram.v, regs.v, idec.v, cpu.v.
b. In directory 1 _scan invoke Tessent Scan on the gate-level netlist and insert 20 scan chains [Procedure 8].
c. In directory 2_fs_pg run FastScan on the scan-inserted netlist (20 scan chains) and generate test patterns [Procedure 9]. Next, analyze the TestKompress report and answer these questions [Appendix 6].
d. In the 3_tk_edt directory invoke TestKompress on the scan-inserted netlist (20 scan chains) and create TestKompress logic with 4 scan channels [Procedure 10]. Next, analyze the TestKompress report and answer the following questions [Appendix 6].
· How many initial shifts are there?
· What is the size of the decompressor?
· What is compression per pattern?
e. In the 4_lspec_synth_edtrm directory synthesize EDT logic using Leonardo Spectrum [Procedure 7]. Hint: use the ami05_worst.syn library and analyze source files in the following order: design_scan.v, design_edt.v, design_edt_top.v.
f. In the 5_tk_pg directory run TestKompress on the synthesized top-level of the design and generate compressed test patterns [Procedure 9]. Next, analyze the TestKompress report and answer the following questions [Appendices 4 and 7].
· What is the fault coverage and the test coverage?
· How many test patterns are there?
· What is the total data compression?

LAB 8: Fault diagnosis
[image:]Exercise 1: Logic level diagnosis
Go to directory lab_8/ex_1.
a. Run ATPG for the circuit of Figure 7 using FastScan and save test patterns in ASCII format [Procedure 2].
b. Analyze the fault report and determine fault equivalence classes [Procedure 4].
c. Divide the test pattern set into isolated patterns.
d. Analyze fault reports for particular test patterns and partition the faults into classes.
e. Determine a diagnostic tree.
f. Analyze the test responses for two case studies, complete Table 3 and determine failures.
g. Improve the fault resolution by the generation of tests to distinguish faults: e0 f0 g0.
h. Enhance the diagnostic tree and explain why additional patterns can distinguish targeting fault sites.
[image:]
Figure 7. Circuit for exercise 1

[image:]
Table 3. Case study report for exercise 1

LAB 9: Iterative Diagnosis
[image:]Exercise 1: Iterative pattern generation
Go to directory lab_9/ex1.
a. Run Tessent Diagnosis with the failure file (fail1.log) from one device [Procedure 11].
b. Analyze the diagnosis report and determine the number of symptoms, the number of suspects and the diagnosis score [Appendix 8].
c. Select a good candidate for the iterative diagnosis [Appendix 8].
d. Invoke Tessent Diagnosis with an emulation of the selected failure and create new iterative test patterns [Procedure 11].
e. Run Tessent Diagnosis for both created test pattern sets and failure files.
f. Analyze the diagnosis report and compare results [Appendix 8]. How many suspects were reported for the symptom number 2 after the iterative diagnosis?

[image:]LAB 10: Memory Built-In Self-Test (BIST)
Exercise 1: Algorithm for programmable controller
Consider a memory built-in self-test scheme shown in Figure 8. Tessent MemoryBIST with programmable controller has been deployed to test a word-oriented memory array (128 x 8b). This architecture enables you to define customized test algorithms to target specific memory defects that are difficult to detect with the existing algorithms. The algorithm programing uses a specific syntax wrapper [Appendix 9]. For a complete description of the Algorithm wrapper syntax, refer to the Reference for Algorithm Wrapper Contents appendix.
Go to directory lab_10.
a. Use the programmable controller to generate multiple data backgrounds to detect all coupling faults between neighboring cells of the same word.
b. Use the following data backgrounds:
[image:]
c. Propose a sequence of data background instructions (write, read, compare). Use the wrapper and its contents to develop your algorithm (file 1.alg).
d. Invoke ModelSim algorithm simulation (makealg file), which dumps simulation data around the area of the fault-injected memory and the memory BIST controller.
e. Analyze the simulation report to examine the number of compare failures and verify a correctness of the proposed algorithm.

[image:]
Figure 8. Memory BIST scheme for exercise 1

[image:]

VLSI Testing
Procedures
[image:]

[image:]Procedure 1: Running ATPG (simplified flow for combinational circuits)
a. Tessent Shell needs the following files to be specified:
· Gate-level netlist – contains Verilog gate-level design description.
· ATPG library -- needed if the design contains modules not found in the netlist file.
· Dofile – contains a series of commands to be executed in batch mode (this file is optional, all commands may be also invoked in an interactive mode).
· Logfile – a logfile of messages (optional), add –replace to overwrite the previous logfile
b. Run Tessent Shell using the following command:
$TESSENT_PATH/tessent –shell –dofile <dofile_name> /
-log <logfile_name> -replace
c. Invoke test pattern generation and simulation context:
set_context patterns -scan
d. Load design model:
read_verilog <circuit_filename.v>
e. Load ATPG library file if needed for this design:
f. read_cell_library <atpg.lib>Indicate the top module in the design:
set_current_design <top_module>
g. Switch to analysis mode:
set_system_mode analysis
h. Analyze Flattening, DRC and, Circuit Learning reports.
Notice that all available commands have a manual page that can be invoked as follows:
help <command_name>
To close Tessent Shell use command: exit -d[image:]
Procedure 2: Test pattern generation
After running Tessent Shell and analysis mode [Procedure 1],
a. Indicate stuck-at fault model:
set_fault_type stuck
b. Add a targeted list of faults or all faults:
add_faults -all
c. Run Pattern Generation:
create_patterns
d. Analyze the results [Procedure 4].

Procedure 3: Fault simulation with external test pattern set
After running Tessent Shell and analysis mode [Procedure 1], you can run Fault Simulation of a previously prepared external test patterns set.
a. Indicate stuck-at fault model:
set_fault_type stuck
b. Add all faults:
add_faults –all
c. Indicate the path to external test patterns file (choose Ascii test patterns file format):
set_pattern_source external <patterns_filename.ascii> -ascii
d. Run fault simulation:
simulate_patterns
e. Analyze the results using command line or DFTVisualizer [Procedure 4].
[image:]
Procedure 4: Fault coverage and detected fault analysis
A: using command line
In order to analyze results of ATPG or fault simulation use the following commands in the analysis mode.
a. report_statistics
b. report_faults –class <class_name>
c. class names:
· FULL – all fault classes
· RE – redundant faults
· DS – faults detected by simulation
· EQ – equivalent faults

[image:]
Figure 9: DFTVisualizer - View Fault Coverage Data window
B: using DFTVisualizer
a. In order to analyze results of ATPG or fault simulation open a DFTVisualizer window using the command open_visualizer in the analysis mode.
b. In the DFTVisualizer window select the View Fault Coverage Data option from the Task Manager and do the following (Figure 9).
· Setup the necessary test statistics reported in the Browser window by clicking appropriate buttons (Fault Coverage, Test Coverage, Fault By Category).
· From the main menu select Tools and click Analyze Faults…
· In the Faults & Statistics Options select the Entire Design.
· In the Report Faults Options select the Both of the Above.
· In the Fault Class indicate the targeted fault class (Figure 10)[Appendix 5].
· In the Reported Data click the Report Faults.
· Analyze the list of faults [Appendix 5].

[image:][image:]

Figure 10: Fault Class Choices window
Procedure 5: HDL simulation
a. Run ModelSim: vsim &.
b. Create a design library and map to a physical library.
From File menu choose New, and next Library….

[image:]

· In the Create a New Library window select a new library and a logical mapping to it.

[image:]

· Type the name of your library in Library Name field, e.g. my_work_lib or leave empty and use the default library work.
· Click OK.
c. Compile HDL design files.
· From Compile menu choose Compile…

[image:]
[image:]
· In the Compile HDL Source File window select top-level file from a design directory and click Compile.

[image:]

· Click Done to finish.
· Review the messages on the ModelSim Console window, check compiled modules and expand the working library in the Library pane.

[image:]

d. Simulate.
· From Simulate menu choose Start Simulation...

[image:]

· In the Start Simulation window choose Design tab and from the available libraries select the top-level unit, disable optimization, and click OK.

[image:][image:]

· Review messages printed to the ModelSim Console.
· Review signals of the design in the Objects window.

[image:]

e. Open the waveform viewer and analyze the observable signals.
· Add all required signals in the top-level unit to the waveform viewer. In the Object window from the Edit menu choose Select All.

[image:]

· [image:]Right-click on the highlighted signals and next select Add to Wave.

 [image:]

· To force the required state of input signals right-click on the appropriate signal and select Force… or Clock…. Depending on the selection you can set different properties of the excitation signal.
	[image:]
	[image:]

	
	[image:]

· To run simulation select Run and Run 100 from the Simulate menu.

 [image:]
[image:]
· In the Wave window review simulated signals of the design.

[image:]

· To restart simulation select Run and Restart from Simulate menu.

[image:]Procedure 7: Synthesizing HDL using Leonardo Spectrum
a. Leonardo Spectrum needs three files to be specified as shown in Figure 11:
· RTL model – synthesizable HDL description of your design.
· Synthesis library – contains a description of testable models for logical gates.
· Batch file – contains a series of commands to be executed by Leonardo Spectrum.
b. Leonardo Spectrum results:
· Technology specific netlist – a new netlist synthesized in accordance with a given technology.

[image:]
Figure 11: Leonardo Spectrum synthesis flow

c. First, you need to create a similar file and a directory structure as shown in the frame below:

 (
<LAB_#
>/
-- lab directory
spectrum_synth/
-- Leonardo Spectrum work
 directory
run_spectrum
--
Leonardo Spectrum
 run s
cript
spectrum.batch
--

Leonardo Spectrum batch file
netlists/
-- HDL source files
libs/

-- libraries subdirectory
log/

-- reports subdirector
y
)
[image:]d. Second, create the batch file <spectrum.batch> for Leonardo Spectrum:

 (
//
Load the library
load_library <tsmc035_typ>
//
Read the HDL files
read { abmux.vhd alu.vhd control.vhd datamux.vhd top.vhd }
//O
ptimize the design to a technology
optimize
//
Optionally set timing constraints
set_attribute -net clk -name clock_cycle -value 10
optimize_timing
//
Generate reports
report_delay
report_area -cell
//
Write out the netlist
set vhdl_write_use_packages {library ieee,adk; use ieee.std_logic_1164.all; use adk.adk_components.all;}
apply_rename_rules -ruleset VHDL
apply_rename_rules -ruleset VERILOG
auto_write
../netlist/design
.v
)

e. Next, to run Leonardo Spectrum and synthesize RTL model, create the <run_spectrum> file according to the following call syntax:
 (
$LEONARDO_SPECTRUM
_PATH/
spectrum \
-file <spectrum.batch> \
-log
file <logfile_
name>
)

f. Finally, run pre-generated batch file: prompt > ./run_spectrum. Examine the logfile and verify if the netlist has been written.

Procedure 8: Scan chains insertion using Tessent Scan (batch mode)
[image:]This procedure introduces a scan chains insertion flow that you may use to create scan chains in your design at RTL level using Tessent Scan batch mode. Figure 12 illustrates the scan chains insertion flow.
[image:]
Figure 12: Tessent Scan scan chains insertion flow
a. Tessent Scan needs three files to be specified.
· Non-scan netlist – synthesizable HDL description of your design.
· DFT library – contains a description of testable models for logic gates.
· Dofile – contains a series of commands to be executed by Tessent Scan.
b. Tessent Scan results.
· Scan inserted netlist – a new netlist with inserted scan chains.
· FastScan dofile – provides circuit setup and scan circuitry information used by FastScan for ATPG.
· Test procedure file – contains cycle-based procedures and timing definitions used by FastScan to operate the scan structures within a design.
c. First, you need to create a similar file and a directory structure as shown in the frame below:

 (
<LAB_#
>/
-- lab directory
scan_ins/
-- Tessent Scan work
 directory
run_scan
--
scan insertion
 run s
cript
scan.do
--

scan insertion
 dofile
netlists/
-- HDL source files
libs/
-- libraries subdirectory
log/
-- reports subdirector
y
)
[image:]
d. Second, create the dofile <scan.do> for Tessent Scan:

 (
set_context dft
–
scan

// Go to DFT mode
read_verilog
<verilog_netlist>
analyze_control_signals
–
auto

// Setting parameters for the scan chains logic – 8 scans
insert_test_
logic -number 8
// Save scan inserted netlist
write_design –output_file <verilog_netlist_with_scans> –verilog –replace
// Save test procedure and setup files with the filename prefix "design"
write_atpg_setup <scan_setup_filename>
)

e. Next, to run Tessent Scan and generate a scan chains inserted design file create a <run_scan> file according to the following call syntax:

 (
$
TESSENT_PATH/tessent -shell \
-dofile <dofile_name> \

-logfile
<logfile_name>
 -replace
)

f. Finally, run pre-generated dofile: prompt > ./run_scan. Examine the transcript or logfile and verify that the netlist, dofile, and test procedure files have been written.

[image:]Procedure 9: Test pattern generation using Tessent Shell FastScan or TestKompress
This procedure introduces a test pattern generation flow shown in Figure 13 that you may use to create patterns for your design using Tessent FastScan or TestKompress.
When using TestKompress, test patterns are generated in a fashion similar to that of traditional ATPG (e.g., FastScan). In fact, TestKompress commands are compatible with most FastScan commands. During logic creation, a dofile containing setup information for the pattern generation phase is automatically generated (similarly to how Tessent Scan creates files describing the operation of the inserted scan chain circuitry).
[image:]
Figure 13: FastScan (TestKompress) test patterns generation flow
b. FastScan (TestKompress) needs five files to be specified:
· Scan inserted netlist – a netlist with inserted scan chains.
· FastScan setup (created by Tessent Scan) – it provides circuit setup and scan circuitry information.
· Test procedure file – contains cycle-based procedures and timing definitions, used by FastScan to operate the scan structures within a design.
· Dofile – contains a series of commands to be executed by FastScan.
· DFT library – contains a description of testable models for logic gates.
c. FastScan (TestKompress) results:
· Test patterns – test patterns description file [Appendices 1 and 2].
d. [image:]First, you need to create the same file and directory structure as shown in the frame below:

 (
<LAB_#
>/

-- lab directory
fs_pat_gen/
-- FastScan work directory
run_fs

-- FastScan ru
n script
fs.dofile
-- FastScan do
file
netlists/
-- HDL source files
libs/
-- libraries subdirectory
patt/
-
-
 test patterns subdirectory
log/
-- reports subdirector
y
)

e. Second, create the dofile <fs.do> for FastScan (TestKompress):

 (
set
_context
 patterns
–
scan
read
_verilog

<
verilog_netlist_with_scans
>
read_cell_library
 <
atpg.library
>
set
_current_design
 <
top_design_name
>
// Read scan
 setup
dofile

<
scan_setup_filename
>
// Go to
atpg
 mode
set
_system_mode
 analysis
// Pattern
generation, default is stuck-at
create
_patterns
report
_statistics
write
_
patterns
 ../
patt
/
par.v
 –
verilog
 –parallel –replace
write
_
patterns
 ../
patt
/
ser.v
 –
verilog
 –serial -replace
exit
)

f. Next, to run FastScan (TestKompress) and generate test patterns create a run_fs (run_tk) file according to the following call syntax:
 (
$TESSENT_PATH/
tessent
 -shell
\
-
dofile

<
dofile_name
>

\
-
logfile
 <
logfile_name
>
 -replace
)

Procedure 10: EDT logic insertion using TestKompress
[image:]This procedure presents EDT logic insertion flow that you may use to implant test compression logic into your design and obtain initial test coverage and compression estimates by using TestKompress.
a. TestKompress needs five files to be specified:
· Scan inserted netlist – a netlist with inserted scan chains.
· TestKompress dofile – (created by Tessent Scan) provides circuit setup and scan circuitry information.
· Test procedure file – (created by Tessent Scan) contains cycle-based procedures and timing definitions, used by TestKompress to operate the scan structures within the design.
· Dofile – contains a series of commands to be executed by TestKompress.
· DFT library – contains a description of testable models for logic gates.
b. TestKompress results:
· Design_edt.v – TestKompress circuitry (Verilog RTL).
· Design_edt_top.v – top level wrapper (instantiates core and TestKompress logic).
· Design_core_blackbox.v – blackbox description of the core (used for synthesis).
· Design_dc_script.scr – Design Compiler synthesis script.
· Design_edt.dofile – dofile for TestKompress (test pattern generation).
· Design_edt.testproc – test procedure file (test pattern generation).
· Design_bypass.dofile – dofile for bypass mode.
· Design_bypass.testproc detected – procedure file for bypass mode.
c. First, you need to create the same file and a directory structure as shown in the frame below:

 (
<
LAB_#
>/
-- lab dire
ctory
tk_ip/
-- TestKompress work directory
run_tk_ip
-- run script
tk_ip.do
-- TestKompress do
file
netlists/
-- HDL source files
libs/
-- libraries subdirectory
patt/
-
-
 test patterns subdirectory
log/ -- reports subdirector
)

d. Second, create the dofile <tk_ip.do> for TestKompress:

 (
set_context dft -edt
read_verilog
<verilog_netlist_with_scans>
set_current_design <top_design_name>
read_cell_library <atpg.library>
//Use dofile from Tessent Scan run
dofile design.dofile
//Settings for EDT
set_
edt
_options
 -inpu
t_channels 4 -output_channels 4
//Run DRCs and go to ATPG mode
set_system_mode analysis
//Create Patterns as a sanity check to make sure
//
that you are getting the same coverage as FastScan
create_patterns
//Save
the EDT logic and
synthesis scripts

//
with the
 filename prefix "design"
.
write_edt_files .
/
design
 -verilog -replace
//Exit
TestKompress
exit
 -d
)
e. [image:]Next, to run TestKompress and insert test logic create a <run_tk_ip> file according to the following call syntax:

 (
$TESSENT_PATH/
tessent
 -shell
\
-
dofile

<
dofile_name
>

\
-
logfile
 <
logfile_name
>
 -replace
)

Procedure 11: Diagnosis using Tessent Diagnosis
[image:]This procedure presents how to invoke Tessent Diagnosis on a failure report generated on automatic test equipment (ATE). These failures can be analyzed by Tessent Diagnosis and report the suspected defect locations and failure modes.
a. Tessent Diagnosis needs five files to be specified:
· Flat model netlist – a netlist with test procedure information for pattern generation.
· Dofile – contains a series of commands to be executed by Tessent Diagnosis.
· Test patterns – test patterns description file used in testing process.
· Failure file – a report file as derived from the ATE.
b. Tessent Diagnosis results:
· Diagnosis report – a file with various diagnosis statistics (defect location, type, score).
c. First, you need to create the same file and a directory structure as shown in the frame below:

 (
<
LAB_#
>/
-- lab dire
ctory
diagnosis
/
--
Tessent
 Diagnosis
 work directory
run_
diag

-- run script
ya.do
--
Tessent
 Diagnosis
 dofile
netlists/
-- flat model netlist
patt/
-- test patterns subdirectory
fail/
-- failure files subdirectory
log/
-- reports subdirector
y
)

d. Second, create the dofile <diag.do> for Tessent Diagnosis:

 (
set_context patterns –scan_diagnosis
read_flat_model ../netlists/design.flat
// read external pattern file
set_pattern_
source external ./patt/pat_core.ascii –ascii
// read failure file
read_failure ./fail1.log
// run diagnosis
 and save report
diag
nose_
fail
ure
 -output fail1.rep -repl
)

e. [image:]Next, to use Tessent Diagnosis and run diagnosis create a <run_diag> file according to the following call syntax:

 (
$MGC_HOME/bin
/tessent \
-
dofile diag.do

\
-
log .
./log/diag
.log
–
rep

)

f. Additional commands:
· write_failures – emulates the defect and produces a new failure file,
· create_diagnosis_patterns -diagnosis_report <diagnosis report file> – creates additional internal test patterns to improve a diagnostic resolution.

[image:][image:]

VLSI Testing
Appendices

[image:]Appendix 1: Test pattern description file for combinational designs
FastScan handles several application-dependent storage formats for test patterns. One of them (ASCII test pattern file for f/1 from Lab 1, Ex 1) is presented below.

 (
ASCII_PATTERN_FILE_VERSION = 2;
SETUP =

declare
 input bus "PI" = "/a", "/b", "/c", "/d", "/e";

declare
 output bus "PO" = "/z";
end
;
SCAN_TEST =

pattern
 = 0;

force
 "PI" "11011" 0;

measure
 "PO" "1" 1;
end
;
)

Appendix 2: Test pattern description file for sequential designs
FastScan handles several application-dependent storage formats for test patterns. One of them (ASCII) is presented below.

 (
SETUP =
TES
CYCLE_WIDTH = 3;
DECLARE INPUT BUS "
ibus
" = "/H", "/
INP(
0)", "/INP(1)", "/INP(2)",
 "/
INP(
3)";
DECLARE OUTPUT BUS "obus_3" = "/
OUTP(
0)";
CLOCK "/H" =
OFF_STATE = 0;
END;
END;
CYCLE_TEST =
CYCLE = 0;
FORCE "
ibus
" "01111" 0;
FORCE "
ibus
" "11111" 1;
FORCE "
ibus
" "01111" 2;
MEASURE "obus_3" "1" 3;
CYCLE = 1;
FORCE "
ibus
" "01100" 0;
FORCE "
ibus
" "11100" 1;
FORCE "
ibus
" "01100" 2;
MEASURE "obus_3" "1" 3;
END;
)
[bookmark: Appendix3]

[image:]Appendix 3: Primitive polynomials of degree up to 50[footnoteRef:1] [1: J. Rajski, J. Tyszer, “Primitive Polynomials Over GF(2) of Degree up to 660 with Uniformly Distributed Coefficients,” JETTA, vol. 19, 2003.]

	
	5 coefficients
	7 coefficients
	9 coefficients

	9
	97420
	9753210
	986543210

	10
	106520
	10864210
	1097643210

	11
	118520
	11975310
	1197643210

	12
	127430
	12 1096420
	12 108764210

	13
	139730
	13 1086420
	13 119764210

	14
	149720
	14 11 107520
	14 12 10975310

	15
	15 11630
	15 1297420
	15 13 11975320

	16
	16 10740
	16 13 12 9 6 3 0
	16 15 13 1086420

	17
	17 12840
	17 14 118530
	17 14 12 1086420

	18
	18 15940
	18 14 129630
	18 16 13 1196420

	19
	19 13940
	19 16 139630
	19 16 13 1086420

	20
	20 13950
	20 17 13 10630
	20 17 15 1297420

	21
	21 17 11 5 0
	21 17 13 10630
	21 18 15 12 107520

	22
	22 16 12 5 0
	22 17 12 10630
	22 19 17 14 118520

	23
	23 17 11 5 0
	23 19 15 11730
	23 19 15 12 106420

	24
	24 20 11 5 0
	24 19 16 13850
	24 20 17 15 129630

	25
	25 18 12 6 0
	25 22 17 13840
	25 22 18 15 129630

	26
	26 17 13 6 0
	26 21 17 13940
	26 23 20 16 139630

	27
	27 20 13 7 0
	27 24 19 14 10 5 0
	27 23 20 16 129630

	28
	28 21 15 7 0
	28 25 20 15 10 5 0
	28 26 22 18 14 10630

	29
	29 20 14 8 0
	29 24 19 14 1050
	29 25 21 17 14 10630

	30
	30 20 13 8 0
	30 24 19 14950
	30 27 22 18 139630

	31
	31 23 15 7 0
	31 25 20 15 10 5 0
	31 27 23 19 15 11730

	32
	32 25 15 7 0
	32 27 21 16 10 5 0
	32 28 23 20 17 12840

	33
	33 25 16 8 0
	33 29 23 17 11 5 0
	33 29 24 20 16 12840

	34
	34 24 15 7 0
	34 27 20 16 10 5 0
	34 30 26 21 16 12840

	35
	35 27 17 8 0
	35 28 23 17 10 5 0
	35 31 26 22 17 12840

	36
	36 25 17 8 0
	36 29 24 18 12 6 0
	36 31 27 22 17 13840

	37
	37 28 18 9 0
	37 31 25 18 12 6 0
	37 32 27 23 18 13950

	38
	38 28 20 9 0
	38 33 26 20 12 6 0
	38 33 28 23 18 14940

	39
	39 28 18 9 0
	39 32 26 19 13 7 0
	39 34 29 24 19 14950

	40
	40 29 21 10 0
	40 34 27 19 12 6 0
	40 36 30 26 20 15 1050

	41
	41 29 19 10 0
	41 34 27 20 13 6 0
	41 36 31 26 20 15 10 5 0

	42
	42 31 19 10 0
	42 34 28 20 14 7 0
	42 36 31 26 21 16 11 5 0

	43
	43 33 21 10 0
	43 36 28 20 14 7 0
	43 37 31 25 20 15 10 5 0

	44
	44 31 22 11 0
	44 37 29 21 14 7 0
	44 38 32 27 23 17 11 5 0

	45
	45 32 22 10 0
	45 37 31 23 16 8 0
	45 39 33 27 22 16 11 5 0

	46
	46 33 23 10 0
	46 39 30 21 14 7 0
	46 40 34 28 23 17 11 5 0

	47
	47 35 24 11 0
	47 38 29 21 14 7 0
	47 41 35 29 23 17 11 5 0

	48
	48 38 26 13 0
	48 41 34 25 16 7 0
	48 43 36 30 25 19 12 6 0

	49
	49 35 23 12 0
	49 40 31 24 16 8 0
	49 43 37 31 24 18 12 6 0

	50
	50 39 24 12 0
	50 43 34 24 16 8 0
	50 44 37 30 25 18 12 6 0

[image:]Appendix 4: Test coverage report
Use the report statistic command to generate coverage statistics.

[image:]
Appendix 5: Faults report
Use the REPort faults command in the FastScan or TestKompress dofile to generate the list of the detected faults.

[image:]

Appendix 6: EDT configuration report
[image:]Use the REPort EDT Configuration command in the FastScan or TestKompress dofile to generate the basic EDT configuration report.

[image:]

Appendix 7: Compression ratio
Use the REPort Scan Volume command to generate compressed and uncompressed data volume statistics.

[image:]

[image:]Appendix 8: Diagnosis report

[image:]

[image:]

[image:]Appendix 9: Tessent MemoryBIST algorithm syntax

[image:]
image2.png

image3.jpeg

image4.png

image5.png

image6.png
AND 1 t AND 2

image7.emf
Tests

Faults

Faults	

T

e

s

t

s

	

abcd	

a/0	 a/1	 b/0	 b/1	 c/0	 c/1	 d/0	 d/1	 e/0	 e/1	 f/0	 f/1	 g/0	 g/1	 h/0	 h/1	 i/0	 i/1	 z/0	 z/1	

0000	

0001	

0010	

0011	

0100	

0101	

0110	

0111	

1000	

1001	

1010	

1011	

1100	

1101	

1110	

1111	

image8.png
/

AND1

NOT1

NAND1

NOT2

AND2

00

NAND2

NAND3

AND3

z

image9.png
fault
coverage

random test patterns

image10.emf
10

20

30

40

50

60

70

80

90

100

1000

10000

100000

image11.png
MISR

AND1

i

AND2

AND3

AND4

Tt

ANDS

ANDG

@

It

XOR1

XOR4

@»m

image12.png
001

000

000

000

image13.png
AND1

image14.png
1 1010 v %
2 1011 v v
3 1101 v v
4 | o110 v v
5 0001 R %

image15.png
DO D1 D2 D3 D4 D5 D6 D7
0-0:0:0:
DO D1 D2 D3 D4

D5 D6 D7
;

image16.png
Memory BIST Programmable Controler

Scannable Microcode
Register Array

Repeat Loop
Control

Pointer Control

| ! !

!

N (M

Comparator Data Generator Address Generator [Signal Generator]
| | -

-

Memory Array — 128x8b)

image17.png
Tools Windows

Bl v x| €] @ || e

8

Gi

=lt.3
Help

Menfor
raphics

[ask Marager

I

View Design Elements

View Fault Coverage Data

Analyze Fault

Help

Transerint
AT2G>

image18.png
1. Faults & Stafstcs Dptons

¥ Entire Deslgn

e

Fepart Faits Options ————————

Faul Type
 Stuck-at-0 / Sov-to-Fise
 Stuck-at-1 / Soy-to-Fal
= Both of the ahove

Faul Class (Code or Nare)

2. Reported Data

Report Fauts | Show Statistics | Report Faut Depth |(Click on aine of Reported Faults to seect fo arsysis)

CMD> report faults -class REDUNDANT

77 comnand: report_faults -class REDUNDANT

type code pin_pathnane

RE /MANDL /00T
EQ /MANDL/THD
EQ /MANDL/TL
EQ m
RE m

Fecundant
Tied
Blocked
Fechndant

SfAU . Atpg_untestable

Faits

ip |

 Stukat0 anayee | Anaee
3Pt JNANDIIOUT | S0 aribs | AR |1 e to Eisting Sohemat

DETEGted (DS +DI+C| /|

Dimiss

image19.png
Edit View Compile Simulate

T o octoy

Open. Source »
Load Project.

Close
Import »M

image20.png
+ anew library and a logical mapping to it

image21.png
™ () ModelSim SE-64 6.5¢

File Edit View JSUNIEN Simulate Ag

|0- =@ -,EWH
- Campile Options

image22.png
™ () compile Source Files

Directary: /homerisitestlab/lab01/ex_1

Librarys fvork

& vork

8 ey

KT |
Fle name: [oL.v Conpite

Flles oftpe: ~ *#1uhd *sha *sho *hdl 4o *4p 50 svh svp “psl*#t“snt"vem | Do

I~ Compile selected fes together Default Options. Edt Source

image23.png
A Library

¥|Name

i work
et
I foatrdio

Type
Library
Module
Library

Path
/hame/visitestlabilab0l/ex_ ork
Ihome/visitestlab/lab0l /ex_1/c1.v
$MODEL_TECH/. Moatfixlib

s

image24.png
Add Library T

Design Optinization

Runine Options

Bun »
Break.
End Simulation

image25.png
™ (O start Simulation ®
Dssign| VAL | Verisg | Lirares | soF | oters | [
[¥Name Trype Jpain Al
i vork Ubrary Mome/vistesviabfiab0/ex_1Avork
et Module ome/vistestiabiiab0/ex_1/c1.v
o8 Mol ¥ Lty SMODEL_TECH. Aty
S miAvm Uiy SMODEL_TECH!/avm
SBl O Lbray SMODEL_TECH!fovn-202 o
SBlmPA Ly SMODEL_TECH!/pa_iib
SJLMUPF Ubrary SMODEL_TECHLABLIID
SBlsvst Lbray SMODEL_TECH/sv_sta
w1 L vitalznnn Librar: SMODFI_TECH/ /vitalz2nnn A
= -
Design Uni) Resaluton
e ==
Optinization
I~ Enble optimization Optiization Options

oK cancel

image26.png
EEIES

[< Objects

Net
Net
Net
Net
Net
Net
Net
Net

Peeeee e

Net

z
*

Net

z
s

Net

z
*

4 N1g

image27.png
wxlew Compile Simulat

| Delete

Unselect All
Exnand <

image28.png
Shez s he

View Declaaton

s e
e
3o ., ot T

= ToLs > Sgnasin e
fiet To s]

image29.png
eI 7T 0 Data-

Object Declaration
View Assertion
Caver Directive View

¢

o,
7
7
7
7
7
7
7
7
7

Ungraup

Create/Modity Wavetorm
Map To Design Signal

Insert Divider
Insert Breakpoint

NoForce 3

Clack.

Praperiies.

image30.png
™ () Force Selected Signal ®@ @

Signal Name: sin: /e17/81 =1
Value:[1 1

Delay For.[0 N
Cancel After.[100]

oK cancel

image31.png
™ () Define Clock ©

offset Duty
0 50

Period Cancel
100

BT

oK cancel

image32.png
Age Wave Tools Layou
Design Optiizaton.
Strt Sivuiaon
Funtne Qptons.

Break

End Siwiaton

image33.png
SASRRSRRS A,

image34.png
(- Sfilindk RTL model

libraries constraints

Leonardo

Spectrum

echnology
specific
netlist

image35.png
Non-sca
netlist

/ Scan

inserted
netlist

Scan/test logic
configuration

——
Design rule

checking

identification

Scan/test logic
insertion

——

Write results

7 FastScan

dofile

Test
procedure
file

image36.png
Scan
inserted
netlist

FastScan
dofile

Batch file

Design rule
checking

Configuration

Patterns
generation

Save results

Test patterns

Test
procedure
file

image37.png
Report Statistics

command: report statistics

Statistics Report

//
Stuck-at Faults

The total number of faults

Fault Classes #faults
(total)
FU (full) 33374

-~
Test coverage: percentage of all
testable faults

-~
Fault coverage: percentage of all faults

DS (det_simulation) 25015 (74.95%)

DI (det_implication) 5375 (16.11%)

UU (unused) 100 (©.30%)

TI (tied) 2269 (6.80%)

RE (redundant) 615 (1.84%)
Coverage /

test_coverage 100.00%

fault_coverage 91.06%

atpg_effectiveness 100.00%
#test_patterns 464
#simulated_patterns 512 \
CPU_time (secs) 3.3

<

7

both testable and untestable

ATPG Effectiveness: a measure of the
tool’s ability to detect a fault or prove
that a test cannot be created with
_current settings

The number of test patterns

image38.png
Faultsreport

cssod-rcccernrross)

Ds /ix16470/B1
EQ /ix16470/B0

Faultsite

EQ 1
EQ /ix817/Ae@
EQ /ix817/Al
5 ivg1

Faultcode

Faultvalue:

EQ /ix16470/B1
Ds /ix817/A@
RE- ix817 /A1

0for stuck-at-0
1for stuck-at-1

DS /ix16470/A@
EQ /ix16478/A1
DS /ix16470/A@
DS /ix16470/A1
7ix853/A1
EQ /ix853/A@

RE: Redundant fault

EQ: Equivalent
to the fault listed

EQ /ix847/Y
EQ /ix847/Al
/1x847/A0

aboveit in the
fault list

image39.png
EDT configuration

// command: report edt configuration \

IP version: 4

Shift cycles: 70, 47 (internal scan length) + 23 (additional cycles)
External scan channels: 1

Internal scan chains: 30

Masking bits: 10

Decompressor size: 13

Scan cells: 1384

Compression per pattern: 19.77x (ATPG bypass = 1 x 1384, EDT = 1 x 70)
Bypass logic: On

Lockup cells: On

Clocking: edge-sensitive

Compactor pipelining: Off

image40.png
Scandata volume statistics
// command: report scan volume

/1
e
// Scan volume report.

[/ e

// channels : 1

1/ shift cycles : 47+23

// pattern # test # scan input volume output volume average

// type patterns loads (cell loads) (cell unloads) volume
[/ mmm e mmmmen e oo oooiooioeios oo
// chain_test 39 39 2730 2730 2730
// basic 345 345 24150 24150 24150
// multiple_load 15 41 2870 1050 1960
[/ s s e eeoooion eemeooiooon oo
// total 399 425 29750 27930 28840
[/ mmm e mmmmmen e eeoioio oooio-iieien oo
K// total 839 879 1239390 1182990 1211190

Calculating compression ratio

Uncompressed Data Volume 1211190
EDT Compressed Data Volume 28840

=41.9%%

image41.png
Report Statistics

#symptoms=2 #suspects=13 CPU_time=0.22sec fail log=faill.log \f oymptom and supects \

#failing patterns=41, #passing patterns=450 « Asymptomisa localization of a potential defect.

#unexplained failing_patterns=19 . - -
2 37 57 65 26 103 110 116 187 196 A symptom can have multiple suspects due to inherent

208 268 271 274 275 305 310 315 336 logic resolution or insufficient patterns.

.

Failing patterns

symptom=1 #suspects=1 #explained_patterns=20
) 59 95 105 169 180 191 192 200 224
226 232 265 266 344 372 420 429 434
suspect score fail match pass_mismatch type

value pin_pathname cell_name net_pathname

1) STUCK] /cpu_i/uSDM/ix3179/Y nor@3 /cpu_i/uSDM/nx3178

2) EQL 1 /cpu_i/uSDM/ix3179/A@ nor@3 /cpu_i/usDM/nx2130

3) EQL 1 /cpu_i/uSDM/ix3179/A1 nor@3 /cpu_i/uSDM/nx2133

4) EQL 1 /cpu_i/uSDM/ix3179/A2 nor@3 /cpu_i/uSDM/nx2136

5) EQL 1 /cpu_i/uSDM/ix746_ix17/Y a0i221 /cpu_i/uSDM/nx2130

6) EQL 1 /cpu_i/uSDM/ix746_ix23/Y nor@3 /cpu_i/uSDM/nx2133

7) EQL 1 /cpu_i/uSDM/ix746_ix29/Y nor@3 /cpu_i/uSDM/nx2136

8) EQL) /cpu_i/uSDM/ix3171/A1 nor@2_2x /cpu_i/uSDM/nx3178

9) STUCK 1 /cpu_i/uSDM/ix3171/Y nor@2_2x /cpu_i/uSDM/nx3170

10) EQ9 1 /cpu_i/uSDM/ix625_ix13/A@ nand@3 /cpu_i/uSDM/nx3170

1) STUCK] /cpu_i/uALU/modgen_or_2_ix11/B1 a0i221 /cpu_i/OPERAND_B_4
))

Confidence
score

Suspect
number

Failure Netlist path Corresponding
mode to pin port cell

Symptom number 2 has several suspects that have the same score.
However this failure has only 2 explained patterns the resolution is
limited. In this case it is good candidate for iterative diagnostics.

image42.png
STUCK Stuck-At fault
OPEN/DOM Either .an.open or a dominate bridge
victim of unknown source
EQ Indicates the suspect type is

equivalent to the preceding suspect

INDETERMINATE

Diagnosis cannot classify fault into
any above fault types

image43.png
(—‘

Algorithm (<AlgorithmName>) {
TestRegisterSetup {
AddressGenerator {

Algorithm syntax \

}

DataGenerator {

The AddressGenerator sub-wrapper groups the properties
of the address generator which require initialization prior

kto execution of the microprogram.

~

J

}

MicroProgram {
Instruction (<InstructionName 1>) {\

}

Instruction (<InstructionName 2>) f/

The DataGenerator sub-wrapper groups the properties of
the data generator which require initialization prior to

L execution of the microprogram.

~

J

Each Instruction wrapper represents one micro code word

image1.jpeg

