
Executive summary
Analyzing the high-level APIs of the most widely used ML frameworks such
as Tensorflow, PyTorch, Keras, Gluon, Chainer and Onnx, it’s easy to recog-
nize that the dominance of the Python language is overwhelming. The
intensive computations running on a GPU are programmed in low-level
code, but Python appears to be convenient for defining and configuring
the algorithms in high-level code. In this paper we explore how the Python
API for the AUTOSAR Adaptive platform can enable researchers to focus on
the mathematical problems instead of dealing with the excess compilation
time and possible debugging quirks of a C++ program.

Karoly Molnar
AUTOSAR Software Architect

Siemens Digital Industries Software

siemens.com/software

Enabling the Python
API for the AUTOSAR
Adaptive Platform
Embedded systems

White paper | Enabling the Python API for the AUTOSAR Adaptive Platform

2Siemens Digital Industries Software

The automotive software industry is making continuous
attempts to standardize certain common components in
order to improve the compatibility between different
vendors and reduce cost. In the past decade, the
AUTOSAR consortium has played a key role in defining
methodology, protocols and middleware functionality
to handle the complexity of the software design of a
modern car. Considering embedded middleware, the
consortium has focused initially on microcontroller-
based distributed systems under the term AUTOSAR
Classic. In the past years, however, the demand for
more powerful software algorithms and the supply of
capable hardware has made possible the introduction of
the new set of specifications. This new AUTOSAR
Adaptive Platform aims to meet the recent challenges of
the industry by defining service oriented communica-
tion concepts and methods to upgrade software using
modern APIs.

The AUTOSAR Foundation Specification mandates
“appropriate language bindings” at the highest level,
but it does not define which language to use. However,
the AUTOSAR Adaptive specification set is refined to
C++, or more precisely C++11.

AUTOSAR does so with a good reason, the chosen lan-
guage, C++11 is powerful and mature. With proper
constraints, it can be used in performance-optimized
embedded systems for automotive. It is therefore
assumed the remainder of the AUTOSAR Adaptive stan-
dard is specifying and referring to variables, classes and
APIs in C++ syntax. This a versatile and widely available
language that could satisfy all goals that the automotive
industry is set on in-vehicle application software.

Looking at it from a wider perspective, the Siemens
Digital Industries Software automotive software team
believes that each project shall use the tools that are
optimal for reaching the goal. In this context, the pro-
gramming language is just a tool. If a given develop-
ment activity benefits from using another programming
language then better results can be achieved in
shorter time.

Therefore, the goal of this paper is to explore several
use cases that benefit software developers from binding
Adaptive Runtime for AUTOSAR (ARA) to other program-
ming languages.

Introduction

White paper | Enabling the Python API for the AUTOSAR Adaptive Platform

3Siemens Digital Industries Software

In the past decade we have experienced a major shift in
the automotive industry with new innovations around
ADAS and EV technologies – emerging at a very fast
pace. Detailing these innovations is not in the scope of
this paper, but the paper will emphasize a number of
aspects that may justify considering alternative pro-
gramming languages.

The importance of rapid prototyping
The R&D path from idea to final product is seldom
straightforward. The necessary experimentation to
unfold a concept requires different tools compared to
the tools used for creating the final product. The tools
that enable creation of rapid prototypes may be a good
addition to the innovator’s toolset. In this sense, C++ is
normally not the fastest language to write code in, or

even to compile, to say at least. There are programming
languages that may fit better to the need for faster
design iterations in early phases.

Bringing programming languages of innovation and
research into automotive
The increased attention on ADAS solutions has resulted
in a growing demand for data scientists and researchers
in the automotive job market. These Machine Learning
(ML) experts have strong programming skills and are
comfortable with C++. However, in ML research it is
more common to use other high-level programming
languages. By enabling these scientists to use the pro-
gramming language that they are most comfortable
with their work efficiency could significantly improve.

The consequence of recent changes in the
automotive industry

By analyzing the high-level APIs of the most widely used
ML frameworks such as Tensorflow, PyTorch, Keras,
Gluon, Chainer and Onnx, it’s easy to recognize that the
dominance of the Python language is overwhelming.

There is a reason for this. The intensive computations
running on a GPU are programmed in low-level code,
but Python appears to be very handy for defining and
configuring the algorithms in high-level code. This
allows researchers to focus on the mathematical prob-
lems instead of dealing with the excess compilation
time and possible debugging quirks of a C++ program.

Recognizing the gap between the high-level APIs, the
ML frameworks and their automotive applications,
Siemens has created a set of Python packages for

AUTOSAR. These packages allow simple, high-level
access to AUTOSAR APIs.

Architectural considerations
In order to provide the Python APIs, two fundamental
challenges had to be solved.

#1: API Syntax
We have chosen a highly pragmatic approach mimicking
the C++ APIs as much as possible, and in a most practi-
cal manner. The primary aim was to minimize the differ-
ence between the API names in order to allow faster
transition later from the prototype model to the produc-
tion code.

The Python API for AUTOSAR Adaptive Platform

White paper | Enabling the Python API for the AUTOSAR Adaptive Platform

4Siemens Digital Industries Software

#2: Native implementation vs binding
There were two options; whether the Python APIs
should be built as a complete replacement of the C++
runtime, or in a form of a binding layer on top of C++
(figure 1).

While both approaches have their distinct benefits,
there were stronger arguments for building Python
support as a binding layer on top of the existing C++
runtime.

Specifically, these were the benefits/advantages of
merit:

• Smaller code base can follow the standard API
changes easier

• Better CPU load balancing with C++ multithreading

• Re-use of third party components available in C++ only

One could argue that any Python application can imple-
ment its own persistency and logging in a few lines of
code without the overhead of using ARA-compliant
architecture. While this is true for the simple use cases,
the advantage of using the redundancy and encryption
features of the ARA persistency, or the interfacing to the
standard DLT logging, would not be available. One of
the key benefits of AUTOSAR is that it encapsulates years
of automotive lessons learned across the industry.

Wherever the API is dynamically generated from the
configuration, the related Python API is generated. This
is primarily applicable for COM in the first iteration of
the binding solution. The generator is using the very
same manifest artifacts as each of the C++ generator
back-ends. This means no additional configuration is
needed for the sake of Python bindings.

In certain functional clusters such as logging, persis-
tency, or execution management, the Python APIs
remain static, following the behavior of the underlying
C++ implementation.

Figure 2 provides an architectural overview with
selected functional clusters. The binding layer is on top
of the ARA Functional Cluster APIs.

Figure 1: Architectural choices with different extent of using Python in
layered architecture.

Figure 2: The boxes in light blue color are the scope of this paper. The green boxes represent the standard Adaptive stack.

White paper | Enabling the Python API for the AUTOSAR Adaptive Platform

5Siemens Digital Industries Software

The goal is to provide a Python API facility for a set of
features that would be immediately usable for an algo-
rithm developer. Therefore, the initial set of binding
packages are available for Communication Manager,
Persistency, Log and Trace and Execution Management.1
The APIs support the latest 19-03 AUTOSAR specification.

A number of representative code snippets are demon-
strated below in order to provide some understanding
on the available Python APIs.

Log and trace
Logging is fully supported. Logged data is reported as
String for convenience. This simple example shows how
to log information from a Python application that ends
up in ARA Log and Trace:

The steps of initializing the logging and creating a con-
text are the same as in C++. Similarly, after the logger
context is created, the actual logging can be performed
via the usual LogFatal, LogError, LogWarn, LogInfo,
among other methods.

Persistency
The supported features include both Key-Value Storage
(KVS) and a File storage-type of Persistent storage. ARA
compliant Persistency can be also used via a few lines of
code:

In the above example,a KVS Persistent storage mecha-
nism is used with an underlying database, which is a
JavaScript object notation (JSON) file in our use case. A
value is written and another is read from the database.

Communication
The language binding supports publishing of and sub-
scribing to services. APIs are used to handle events,
methods and fields and are available on both the proxy
and skeleton sides including the necessary call-back
methods. The ARA:COM APIs both on the Proxy and
Skeleton side are heavily configuration dependent.
Therefore, the binding layer built on top of the gener-
ated C++ APIs are dynamically created as well.

1. The Communication Management cluster is responsible for interaction
between adaptive applications. Persistency is responsible for non-vola-
tile data storage. The Log and Trace cluster handles logging both
locally and remotely. Execution Management is responsible for manag-
ing application startup and shutdown.

Practical implementation details

Python
import py_ara_log as log

log.InitLogging(“APPY”, “Logging ID”, log.LogLevel.kWarn,
log.LogMode.kConsole)

ctx = log.CreateLogger(“CTXX”, “test context”)

ctx.LogFatal(“Fatal Error happened!”)

C++
#include “ara/log/logging.h”

using namespace ara::log;

InitLogging(“APPY”, “Logging ID”,LogLevel::kWarn,
LogMode::kConsole,””);

Logger& ctx = CreateLogger(“CTXX”, “test context”);

ctx.LogFatal() << “ Fatal Error happened!”;

Python
import py_ara_per as per

kvsDatabase = per.OpenKeyValueStorage(“applDatabase.
json”)

kvsDatabase.SetInt32Value(“thisIntValue”, 42)

val = kvsDatabase.GetStringValue(“otherStrValue”)

C++
#include “ara/per/key_value_storage.h”

auto kvsDatabase = ara::per::OpenKeyValueStorage(“applDa
tabase.json”);

kvsDatabase.Value()->SetValue(“thisIntValue”, static_
cast<int32_t> 42);

auto val = kvsDatabase.Value()->GetValue(“otherStrValue”)

White paper | Enabling the Python API for the AUTOSAR Adaptive Platform

6Siemens Digital Industries Software

In the example below the imported controllerproxyimpl
package is a generated Python module wrapping C++
interfaces. In order to initialize and use the features

from Python, the same steps must be performed as in
the C++ counterpart.

Python
from controllerproxyimpl import ara, mentor, SensorProxyImpl

callback function that is called when an appropriate Service is found

def SensorServiceFound(handles, handler):

 if handles:

 SensorHandle = handles[0]

 global SensorServiceProxy

 SensorServiceProxy = SensorProxyImpl(SensorHandle)

We need an appropriate Service for the SensorProxy. So we call StartFindService. If

the matching Service is found, the function SensorServiceFound is called.

mentor.demo.sensor.proxy.SensorProxy.StartFindService(SensorServiceFound)

We register a callback function for the received Events.

SensorServiceProxy.SensorEvent.SetReceiveHandler(EventReceived)

The EventReceived callback function is not listed here, but in general it shall

subscribe to the interesting Events, like this:

SensorServiceProxy.SensorEvent.Subscribe(ara.com.EventCacheUpdatePolicy.kNewestN, 1)

The Set Method of the SensorField is called,

that will change the value remotely on the Service side:

SensorServiceProxy.SensorField.Set(10)

C++
#include “mentor/demoapp/sensor/sensor_common.h”

#include “mentor/demoapp/sensor/sensor_proxy.h”

void SensorServiceFound(ara::com::ServiceHandleContainer

<mentor::demoapp::sensors::proxy::sensorProxy::HandleType> handles, ara::com::FindServiceHandle handler)

{

 if(handles.size() > 0) {

 mentor::demoapp::sensors::proxy::sensorProxy::HandleType SensorHandle = handles.front();

 SensorServiceProxy = std::make_shared

 <mentor::demoapp::headlights::proxy::headlightsProxy>(headlightsHandle);

 }

}

auto Sensor_fsh =

mentor::demoapp::sensors::proxy::sensorProxy::StartFindService(SensorServiceFound);

SensorServiceProxy->SensorEvent.SetReceiveHandler(EventReceived);

SensorServiceProxy->SensorEvent. Subscribe(ara::com::EventCacheUpdatePolicy::kNewestN, 1);

SensorServiceProxy->SensorField.Set(10);

White paper | Enabling the Python API for the AUTOSAR Adaptive Platform

7Siemens Digital Industries Software

Execution management
The API set of the ExecutionClient class are fully sup-
ported. This allows Python applications to report back
their operation status to the Execution Manager. Note:
DeterminsticClient APIs are not supported.

In the example below, the application reports back it’s
running state to the ExecutionManager using just a few
lines of code.

Machine learning support
A complete machine learning example would not fit in
the extent of this paper. Therefore, only a few lines of
code are presented to demonstrate the simplicity of using
an ML framework with the ARA Python binding API:

In the example on the previous page, the results of a
random loss calculation of a PyTorch model are pro-
vided via service events. The lines marked with yellow
are related to ARA COM functionality for Service
Initialization and Event sending. The blue lines are for
logging to the ARA Log and Trace.

What’s left out?
While the covered functionality and the number of
supported APIs may grow over time, there are a number
of domains that are just not practical to introduce in
interpreted languages. Features that are related to
safety critical operation or hard, real-time behavior are
not in the current scope of the Python binding layer.
Given this philosophy, the ARA:EXEC DeterministicClient
APIs or the Platform Health Management APIs are not in
the scope of this package.

OS support and third-party code
The Python package provided by Siemens runs on desk-
top Linux® out-of-the-box. A Yocto Project-based Linux
can also be used with minor configuration. Upon request
other embedded solutions can also be supported.

Python
import py_ara_exec as exec

em = exec.ExecutionClient()

em.ReportExecutionState(exec.ExecutionState.kRunning)

C++
#include <ara/exec/execution_client.h>

ara::exec::ExecutionClient em;

em.ReportExecutionState(ara::exec::ExecutionState::kRunn
ing);

import torch
import py_ara_log as log
import roadSignDetectorSkeletonImpl

Initializing ARA LOG infrastructure
log.InitLogging(“SIGNS”, “PyTorch ARA example”, ara_log.LogLevel.kInfo, ara_log.LogMode.kConsole)
logger_signs = ara_log.CreateLogger(“MAIN”, “Main log context”)
logger_signs.LogInfo(“Main started”)

Offering signs service for other applications
signs = roadSignDetectorSkeletonImpl(ara.com.InstanceIdentifier(0x02))
signs.OfferService()

p_in = torch.autograd.Variable(torch.randn(10, 10))
p_out = torch.autograd.Variable(torch.randn(10, 20), requires_grad=False)
model = torch.nn.Sequential(torch.nn.Linear(10, 32),torch.nn.Linear(32, 20))
f_loss = torch.nn.MSELoss()
loss = f_loss(model(p_in), p_out)

Logging loss data to ARA LOG
logger_signs.LogInfo(“Loss Data “ + str(loss.data[0]))

Sending loss data to loss event of signs service via ARA COM
signs.loss.Send(loss.data[0])

White paper | Enabling the Python API for the AUTOSAR Adaptive Platform

8Siemens Digital Industries Software

Sometimes the complexity of the safety and perfor-
mance oriented C++ API makes it difficult to use in the
early phases of the development. Using Python binding
provides the synergy between the simplicity of the
Python language and the versatility of AUTOSAR
Adaptive Platform. Python, being the most widely used
language of major ML frameworks, helps data scientists
with academic backgrounds deliver results quickly in
automotive prototypes. The resemblance of the API
names allow the team to quickly familiarize themselves
with the AUTOSAR concepts and the syntax of the final
C++ product.

Recognizing the gap between the high-level APIs, the
ML frameworks and their automotive application,
Siemens has created a set of Python packages for
AUTOSAR. These packages provide simple, high-level
interfaces between Python programs and AUTOSAR
Adaptive.

To learn more about Siemens’ involvement in AUTOSAR,
please visit this website.

Conclusion

References
1. AUTOSAR_RS_Main.pdf, Version 1.5.1. “AUTOSAR Main Requirements.”

Siemens Digital Industries Software

Headquarters
Granite Park One
5800 Granite Parkway
Suite 600
Plano, TX 75024
USA
+1 972 987 3000

Americas
Granite Park One
5800 Granite Parkway
Suite 600
Plano, TX 75024
USA
+1 314 264 8499

Europe
Stephenson House
Sir William Siemens Square
Frimley, Camberley
Surrey, GU16 8QD
+44 (0) 1276 413200

Asia-Pacific
Unit 901-902, 9/F
Tower B, Manulife Financial Centre
223-231 Wai Yip Street, Kwun Tong
Kowloon, Hong Kong
+852 2230 3333

siemens.com/software
© 2019 Siemens. A list of relevant Siemens trademarks can be found here. Other trademarks
belong to their respective owners.

81411-C3 9/19 N

About Siemens Digital Industries Software
Siemens Digital Industries Software is driving
transformation to enable a digital enterprise where
engineering, manufacturing and electronics design
meet tomorrow. Our solutions help companies of all
sizes create and leverage digital twins that provide
organizations with new insights, opportunities and
levels of automation to drive innovation. For more
information on Siemens Digital Industries Software
products and services, visit siemens.com/software
or follow us on LinkedIn, Twitter, Facebook and
Instagram. Siemens Digital Industries Software –
Where today meets tomorrow.

About the author
Karoly Molnar is an AUTOSAR Software Architect at
Siemens. During Karoly’s 14 years of service at Siemens
he has been a software development engineer, an
operating manager, to his current position as software
architect, which he has held since 2014. Mr. Molnar
received a master’s degree in electrical engineering
from the University of Budapest.

