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Executive summary
This paper presents developments in autonomous vehicle control  
exploiting combination architectures of model-based and machine  
learning to enhance both safety and comfort performance. Recently, 
machine learning has been investigated in ADAS control; however,   
the disadvantages are lack of rigorous results on explainability and  
safety. We discuss several strategies that can incorporate data learning   
in controls development dealing with these challenges. The presented   
use cases include imitation learning to learn human-like driving in lane 
keeping; Gaussian process adaptive control to predict vehicle states in 
snowy  driving; reinforcement and iterative learning control; and safety  
verification of neural networks. We also present several testing methods 
with model- and hardware-in-the-loop for testing and validation.
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Introduction

Safety is considered the most important factor and 
motivation of autonomous driving (AD) and advanced 
driver assistance system (ADAS) development.   
While several assistive functionalities in the automotive 
industry can assist drivers in normal scenarios (such  
as adaptive cruise control or autonomous parking)  
it is desirable that future ADAS/AD systems can also  
deal with more safety-critical scenarios. For example,  
the Euro NCAP 2018 Automated Driving Tests report1    
indicates that cut-in scenarios are considered one of  
the most challenging tests for highway assist systems. 
In the cut-in test, a car from the adjacent lane merges 
into the lane just in front of the test car, which is  
a common scenario in everyday traffic. Several test  
vehicle ADAS controllers have failed to react sufficiently 
early to avoid accidents during the tests. Other   
examples include avoiding collision at high speed  
within short distance and driving in low friction  
conditions due to rain or snow. These types of   
scenarios imply challenges for model-based control 
such as nonlinearities, model uncertainties, environ-
ment disturbance and limited computation time.  
It has been shown that even an advanced model-based  
control design may fail to achieve safety in these  
scenarios of avoiding collision.2, 3

Comfort, or the occupant’s perception of the vehicle 
performance in ADAS scenarios, is another challenge for 
automotive OEMs. Customers will only accept the ADAS 
functions if they experience comfortable feelings,  
and do not urge to take over vehicle control. Though  
significant knowledge is available on the performance 
perception for human drivers, these previous studies 
are no longer applicable for ADAS scenarios where the 
focus is on the occupant. Not being in control (steering, 
throttle, brake) of the vehicle as occupant, will result in 
different subjective assessments of either the lateral or 
vertical dynamics of the vehicle, and hence requires 
different objective performances to be tracked related 
to those of occupant assessments. Using those objective 
performances in the requirement definition for ADAS 
functionality enables differentiation of metrics in  
performance, while maintaining safety as a hard  
constraint to be satisfied. Ideally, in normal scenarios, 
the ADAS algorithms should be designed to optimize 

both safety and comfort performance. In critical driving 
scenarios, safety performance is the highest priority  
and should be incorporated as a hard constraint,  
while comfort performance could be treated as soft   
constraint, that is, not compulsory.

The autonomous vehicle control design usually relies  
on model-based control methods types, for example 
pure pursuit, H-infinity, linear-quadratic regulator 
(LQR), and model predictive control (MPC).4 However, 
conventional model-based controllers have shown 
difficulties in dealing with safety in critical driving  
scenarios and in incorporating comfort objectives. 
Recently, several machine learning-based methods  
have been exploited for autonomous driving control; 
however, their disadvantages are lack of rigorous 
results on explainability and safety. In this paper,  
we aim to exploit the advantages of both types,  
sometimes in a combined architecture, to enhance 
safety and comfort driving performance, while still 
trying to guarantee formal requirements and explain-
ability. In the first part of the paper, we discuss several 
technologies to improve safety and comfort driving 
performance. The techniques include both model-based 
and machine learning-based approaches:

• Nonlinear MPC with long prediction horizon   
to increase safety and comfort performance

• Learning adaptive control to improve safety   
against disturbance

• Learning from experience to improve control   
performance of similar driving tasks

• Reinforcement learning with a formal safety   
envelope

• Imitation learning for human-like driving

In the second part of the paper, we present several 
testing methods used for validating the proposed  
control developments.

Control technologies development
In this section, the developed control algorithms will  
be formulated in more detail, including main ideas and 
some initial results. The validation results are mostly 
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conducted in a co-simulation framework of Siemens 
Simcenter™ Amesim™ software and Simcenter™ 
Prescan™ software, which simulate high fidelity  
of vehicle dynamics and traffic/sensor models, 
respectively. 

Nonlinear MPC with long prediction horizon to  
increase safety and comfort performance 
Model predictive control (MPC) is a potential solution 
for autonomous driving, for both motion planning and 
trajectory following control. MPC design solves a  
model-based optimization problem over a given  
prediction horizon to generate control signals. MPC  
has been applied successfully in different industries 
such as chemical plants and oil refineries. And with  
the recent advancement in both theory and algorithms 
for solving  optimization problems in a real-time  
environment, MPC controllers have been shown also 
capable for fast dynamic systems.5 In autonomous  
driving, MPC can realize several control functionalities 
such as adaptive cruise and lane-keeping control while 
capable of incorporating vehicle dynamics, constraints 
(i.e. steering, throttle capabilities) and traffic environ-
ment information (i.e. safety constraints to avoid  
collision with other vehicles). In addition, other  
comfort objectives that relate to acceleration and 
jerk constraints can also be included. One of the main 
challenges of MPC is computational cost, as it relies  
on solving a nonlinear optimization problem each 
sampling.

The predictive horizon length is dependent on computa-
tion capability; consequently, the safety conditions are 
usually guaranteed only within a limited finite horizon. 
The short prediction horizon is challenging to deal with 
critical driving maneuvers and could lead to limited 
comfort performance. We have developed a nonlinear 
MPC algorithm to ensure safety within infinite horizon 

formally, based on control barrier function (CBF). 
Similar to Lyapunov functions to certify stability  
properties of a set without calculating solution of  
a system in nonlinear control theory, CBFs were  
introduced recently to certify forward invariance of a  
set using barrier function without computing the state’s 
reachable set.6 Here, we incorporate CBF into the MPC 
design formulation. The objectives are to guarantee 
safety in infinite prediction horizon and hence improve 
overall MPC performance. In addition, since the algo-
rithm considers long prediction horizon, the benefits  
are also on comfort enhancement. That is, the car can 
do smooth accelerating and decelerating motion rather 

Figure 1: Prediction horizon in MPC control.

Figure: 2: Comparison between our CBF-NMPC design (black) and conven-
tional MPC design in a critical double lane change scenario (gray): torque, 
steering, and lateral accelerations of car body center of gravity.
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than sudden/non-smooth ones. As an example, figure 2 
presents results from a safety-critical scenario control 
where the car does double lane change maneuvers  
to avoid a static object in short distance. The figure  
illustrates control (torque/steering) and acceleration 
signals from our control design and conventional  
nonlinear MPC. It is clearly seen that our design   
obtains non-saturated and smooth control actions. 
More technical details can also be found in reference 3.

Learning adaptive control to improve safety   
against disturbance
One of the main challenges of model-based control 
design is that it requires a reasonably accurate but 
low-order mathematical model (transfer function or 
state space) of the system. In safety-critical scenarios, 
the system dynamics are however often too complex  
or computationally expensive to be incorporated.  
On the other side, the required model development  
and engineering efforts to deal with various complexi-
ties would pose significant difficulty and limit the  
use of physics-based models in model-based control.

In this work, we attempt to learn these complex  
dynamics from data learning and representation.  
The combined physics-based and data learning-based 
model is then exploited for a combined control architec-
ture, shown in figure 3. Two different model learning 
methods are developed based on Gaussian Processes 
and L1-Adaptive control.

Gaussian processes for learning and control
Gaussian process (GP) is investigated for modeling 
dynamical systems. Gaussian process regression is a 
statistical machine learning method. Given a training 
set containing inputs and their corresponding measured 
output values, GP regression aims to learn a function 
that predicts the output at new, unobserved input loca-
tions. GPs are flexible and able to capture nonlinear 
dynamics with fewer parameters and less computation 
than other machine learning methods like deep learn-
ing. It requires less training data to obtain a reasonable 
prediction, in particular for control purposes.7, 8 
Moreover, the GP model provides quantification of its 
prediction uncertainty, which is essential to analyze 
robustness and safety aspects. Because of these proper-
ties, GPs are investigated for online control as a tool to 
handle complex dynamics. Figure 5 illustrates the 
advantage of GP in predicting the vehicle dynamic on 
low road friction disturbance, as well as providing its 
uncertainty confidence level. It is seen that accounting 
for GPs to learn the unknown dynamics is beneficial to 
predicting the vehicle dynamics, compared to using 
only low-order mathematical dynamic models.

In more detail, we formulate GPs for learning road 
disturbances in the form of varying road friction and 
incorporate GPs into a nonlinear MPC design formula-
tion. The proposed GP-MPC technique is validated  
with a double lane change scenario when the tire  
road friction is low – as commonly seen in snowy/rainy 

Figure 3: Adaptive control architecture.
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weather. As expected from better dynamics prediction, 
we have shown that GP-MPC outperforms traditional 
MPC in handling safety, but with more computational 
cost.9

L1-adaptive control
The autonomous truck is one of the first potential  
significant markets for self-driving technologies,  
promising increased safety, improved productivity  
and lower costs. Truck and logistics companies are 
considering the economic benefits of autonomous 
driving  functionalities, primarily because of the  
numerous inefficiencies related to human drive  
that could be avoided (rest breaks, holidays, etc.). 
Autonomous trucks can work around the clock,  
surpassing the performance of a human-driven truck. 
Still, truck automation faces various challenges: in 
particular, autonomous trucks must demonstrate  
reliability and feasibility within the operations that  
the human-driven trucks can perform. A truck is used  
in varying conditions, often difficult, for thousands of 
kilometers. Therefore, the autonomous truck should be 
able to withstand wind, cold temperatures, vibrations 
and different road conditions (ice, salt, etc.).

Many safety-critical scenarios must be considered,  
such as unpredictable aerodynamics effects that  
can arise from truck platooning or driving in a tunnel,  
or even possible sudden braking or steering system 
failures.

Figure 4: Lane change driving in snowy weather.

Figure 5: Predicted state evolution of y-position and vehicle heading angle 
using Gaussian process and nominal model compared to the real states. 
The uncertainty interval is in gray.

Here, we investigated L1-adaptive control to compen-
sate for the unknown disturbance acting on the vehicle 
dynamic system. The key feature of L1-adaptive control 
compared to conventional adaptive control is the 
decoupling of the adaptation loop from the control 
loop, which enables arbitrarily fast adaptation without 
sacrificing robustness. The controller performance is 
evaluated for lateral wind disturbance and steering  
rack failure where only a fraction of the steering  
input computed by the controller reaches the vehicle.  
Hence, we assess the controller capability to adapt to  
a sudden disturbance and actuation failure. The results 
are shown in figure 7 for a roundabout driving scenario. 
They demonstrate the higher safety and adaptable 
capability performance of the proposed L1-adaptive 
mechanism. With different levels of disturbances,  
the vehicle tracking performance remains stable.
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Figure 6 : Autonomous truck on a roundabout.

Figure 7: Roundabout driving performance with respect to different  
disturbance parameters – upper: conventional control; lower:   
L1-adaptive control. The dashed line is the reference trajectory.

Figure 8: Drift parking scenario: the blue car tries to park between two 
cars.

Figure 9: Tracking error performance in the iteration domain.
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Learning from experience to improve control  
performance of similar driving tasks 
Next, we apply a specific type of data learning for  
feedforward control, namely iterative learning control 
(ILC), to improve driving control performance of similar 
driving tasks. Instead of taking action on feedback 
control, the key idea of ILC is to update a feedforward 
control signal iteratively based on measured data from 
previous iterations. The essential property in ILC is 
system repeatability, that is, a system is required to 
follow an identical or similar trajectory. Although this 
may seem to be restrictive, many practical systems are 
highly repetitive, for example, racing cars, school and 
shuttle buses, valet parking to a predetermined spot, 
and testing of a specified driving scenario in standard 
tests (i.e. NCAP tests). Through learning in the iteration 
domain, ILC can achieve high tracking performance 
despite large model uncertainty and repeating   
disturbances. Rigorous stability and performance  
analyses are also available in ILC literature to support 
and explain the driving performance while learning.

The proposed ILC design in each iteration includes  
two stages: model-correction and control input designs. 
Both designs rely on optimization. In each iteration,  
the input signal and the error signal between the  
reference trajectory and the system output are stored  
in memory and exploited for computing the next  
iteration model correction and input signals. The ILC 
designs are applied and validated in a drift parking 
scenario. The results show that with just few iterations 
of data learning, the control performance is significantly 
improved despite of unknown disturbance and  uncer-
tainties in the steering system, and tire  road friction. In 
addition, we have also applied this technique for racing 
application.10

Reinforcement learning with a formal safety   
envelope 
Reinforcement learning (RL) is a branch of machine 
learning that studies the problem of training an agent  
in a real or simulated environment by rewarding or 
punishing the agent for actions taken during its interac-
tion with the environment. This reward function formal-
izes the utility of each action and forces the agent to 
recognize an optimal action policy based on the current 
state of the environment that maximizes the expected 
future discounted rewards obtained during a task. RL is 
conceptually different from supervised or unsupervised 
learning, where the training is typically done offline  
on a static dataset of labeled or unlabeled examples.  
In RL, the training is done in an online fashion with 

continuous interaction between the agent and the 
environment. This means the dataset can constantly 
change during the training phase. For safety-critical 
scenarios, this requires a high-fidelity model or simula-
tion of the environment, since the car (agent) cannot 
execute dangerous maneuvers in the real world to  
learn from its mistakes.

Deep RL (DRL) is the extension of classical RL techniques 
with deep neural networks (DNNs) to learn specific 
functions in the framework. DNNs have been used for 
learning different value functions: the state (V) or the 
state-action (Q) function, in model-free RL, as well as 
for capturing the detailed nonlinear dynamics of the 
plant in model-based RL. DRL is a constantly evolving, 
diverse domain with multiple algorithms and paradigms 
effectively being used to solve complex problems in 
robotics and autonomous driving. A compact survey  
on RL state-of-the-art is available.11

We use DRL for multiple applications in autonomous 
driving, from learning different driving styles from 
vehicle controller area network (CAN) and raw sensor 
data to developing RL-based controllers with a formal 
safety envelope for common ADAS maneuvers (lane 
keeping and vehicle following). As an example, in figure 
10 we show an RL-trained lane-following controller that 
also keeps a safe distance from the lead vehicle, based 
on a formal safety standard, Responsibility-Sensitive 
Safety (RSS) from Intel.12

Figure 10: OpenAI reinforcement learning framework coupling with 
Simcenter Prescan.
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Our development framework consists of the Simcenter 
Prescan simulator connected to the popular OpenAI 
Gym environment for RL development,13 with the RSS 
library integrated into the training loop. Coupling a 
high-fidelity simulator like Simcenter Prescan to an 
open RL training framework like Gym allows engineers 
to leverage the latest algorithm advances in RL with 
accurate vehicle, sensor and environment models to 
enable rapid development of deep learning-based  
controllers. During the training loop, Simcenter Prescan 
sends to the Gym module the ego and lead vehicle 
dynamic state and actuator signals, along with images 
from a front-facing camera at full resolution. The 
images are processed by a deep neural network (DNN) 
to estimate the ego vehicle lateral position based on  
the lane markings. This estimate is combined with ego 
vehicle state and the distance to the front vehicle to 
train a DRL-based controller in Gym to keep lanes and 
follow the front car, while keeping a verifiably safe 
distance calculated from the RSS standard. For this 
canonical example, we use a deep deterministic policy 
gradient (DDPG)14 approach for continuous and precise 
control of the ego vehicle to successfully train a driving 
policy in closed-loop simulation.

Imitation learning for human-like driving
Finally, we study imitation learning technique as a 
guidance for control. Imitation learning or end-to-end 
learning has been considered significantly recently as  
a supervised learning approach to learn from driving  
data.15 The main idea is to create a policy that mimics  
the driving behaviors of (good) human drivers.   
The common challenges of imitation learning are  
the large datasets required, and mismatch between  
the distribution of training and test data. In addition, 
the explainable safety and control properties (i.e.  
stability, settling time, overshoot) of the neural  
network are still largely understudied.

In this part, we exploit the advantages of both model-
based and machine learning-based approaches for a 
hierarchical mid-to-mid framework. The inputs to the 
proposed learning model are representative features 
coming from processed sensor data and the outputs are 
the reference trajectories. As a result, the data-driven 
learning outcome can be treated as a motion planning 
layer. The imitation learning training model is imple-
mented using online dataset aggregation (DAgger).16  

This is an iterative supervised learning fashion, with  
an increasing dataset due to the exposure of the expert 
driver to new states induced by the learner. The dataset 
for learning is generated from virtual Simcenter Amesim 
and Simcenter Prescan data (see figure 11). In the train-
ing loss function of the neural network, we incorporate 
from the beginning the knowledge of safety objectives 
such as collision avoidance with road boundaries 
through barrier function constraints. Combined with 
DAgger, the proposed loss function will show advan-
tages on both safety improvement and convergence 
speed. In addition, we propose to use B-spline trajectory 
parametrization, choosing spline coefficients instead  
of points as output nodes for learning. The advantage  
of this method is that a B-spline is always contained  
in the convex hull of its coefficients. Therefore, safety 
constraints on generated trajectories can be imposed  
by only constraining the spline coefficients in the  
barrier function of the loss function. This technique 
improves computation and learning efficiency aspects.

The proposed development is validated in a lane-keep-
ing scenario. Figure 12 and figure 13 demonstrate  
the Euclidean error to the lane center and the vehicle 
trajectory, respectively, after the 10th rollout. The 
results show that the vehicle can follow the lane center 
using the proposed algorithm. More details are given in 
our recent work.17

Figure 11: Euclidean distance error between the ACPN   
and the expert on a 300s trajectory after the 10th rollout.
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Testing and validation
In this section, we discuss several testing technologies 
exploited in our works for validating the proposed  
algorithm developments toward safety and comfort 
objectives.

Model and hardware in the loop (MiL/HiL)
We first discuss briefly the motivation of using   
simulation for model-in-the-loop and hardware-in- 

Figure 12

Figure 13 

the-loop testing and their roles in safety and comfort 
development.

It is recognized in the autonomous driving industry  
that simulation is an efficient method for testing and  
validating ADAS/AD functionalities. The traffic environ-
ment has a wide variety of parameters from road types, 
vehicles, pedestrians, cyclists, obstacles and weather.  
The number of scenarios grows exponentially with the 
number of parameters and can easily explode up to 
millions Furthermore, all scenarios cannot be produced 
and reproduced easily in real life, and real road testing is 
valid for a specific mechanical, electrical and software 
configuration. If needed to adapt to a new configuration 
or software update, the test must be conducted again. 
Therefore, the major part of the ADAS functionalities 
will be validated through simulations.

Furthermore, MiL/HiL testing with respect to safety is 
particularly essential for several additional reasons:

• Physical vehicle testing for safety-critical scenarios is
dangerous and expensive. An incomplete algorithm
being deployed in a physical car can always cause
collision.

• Development of data-driven based algorithms like
machine learning and imitation learning requires
datasets for training the algorithm. It is however very
difficult and expensive to have datasets of scenarios
relevant to safety, for example, accident or near-
accident, collision avoidance and lane change at
high speed.
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On the comfort side, while it is still not clear to use  
MiL/HiL for subjective comfort, these tests are certainly 
relevant to objective comfort, for example, in analyzing 
accelerations, jerk and time-to-collision features.

Figure 14: Different autonomous vehicle platforms: small vehicles with 
augmented reallity (AR), Simrod vehicle, and conventional vehicle 
equipped with driving robots.

Several steps need to be taken before an ADAS   
controller can be tested on the vehicle in a real-life 
environment. A first step after the offline evaluation  
and simulation is to evaluate the performance of the  
controller on a rapid control prototyping (RCP) platform. 
The vehicle model is a Simcenter Amesim vehicle 
dynamics model, the environment and sensors are 
simulated in Simcenter Prescan. These two platforms  
are linked to simulate the performance of the controller 
on a vehicle (see figure 13).

A next step is to deploy the developed controller onto 
an embedded system and evaluate if the controller is 
still performing as designed. In this case the dSPACE 
rapid control prototyping system is replaced with the 
controller on an embedded system. The rest of the  
setup is kept as was for the previous step: the vehicle, 
environment and sensors can be simulated on a real-
time platform (see figure 14). This approach enables  
a robust evaluation of the controller by a simulation-
based vehicle and environment. Measurement noise 
and system uncertainty can be part of defined  test 
conditions.

Finally, figure 14 illustrates some of our testing setups 
for deployments on a physical vehicle with autonomous 
driving sensors (Lidar, camera, radar) and localization 
system (GPS and inertial measurement unit - IMU).  
The setups range from lab-based testing environment  
to proving ground track testing environment levels, 
providing great flexibilities during solution 
development.

Virtual sensing
Virtual sensing plays an important role in the   
development of controls, particularly for learning  
adaptive control types presented above in the “Learning 
adaptive control to improve safety against disturbance” 
section. Physical quantities that are difficult, impossible 
or expensive to measure can be estimated with 
approaches such as Kalman filters that use system  
models to estimate system states. In most vehicles  
there are sensors available that measure or estimate  
the vehicle motion (center of gravity position and  
velocity). However, this centralized measurement  
point does not allow an accurate evaluation of how  
an occupant would perceive the motion of the vehicle.  
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to prevent overfitting of model parameters. Once the 
training is complete, a test dataset is used to quantify 
the generalization properties of the trained DNN on 
unseen data, often from a different set of scenarios that 
are not present in the training dataset. If the difference 
between the training and test accuracy is small, the 
network is assumed to have trained reasonably well  
and should generalize to unseen data.

This method of verifying the performance of a DNN 
makes a critical assumption: the statistical properties  
of the test data and of the real-world data that the  
DNN will encounter during operation are similar. If this 
assumption holds, then we can trust the DNN to  
have performance close to what was observed during  
inference in the lab. However, the real world is   
constantly changing because of stochastic factors  
and unmodeled dynamics, which makes the previous 
assumption unverifiable in practice. In addition, DNNs 
are particularly susceptible to adversarial attacks,19 
where an attacker can perturb the input to the network 
in a way that is imperceptible to humans but that can  
cause the DNN to output catastrophically erroneous 
predictions.

DNNs are black-box, high-capacity function  
approximators that are not amenable to mathematical   
guarantees about their performance, in general. 
However, there have been several advances in formally 
verifying properties of DNNs under certain assumptions 
about their architecture and activation functions. A 
class of DNNs that has been researched extensively are 
the feed-forward networks with rectified linear units 
(ReLUs) as activation functions. Verifiable properties 
include  specifications that hold over the entire input 
space, guarantees over the states reached in the output  
space using reachability analysis, bounded input-output  
relations for DNNs to guarantee closed-loop stability  
of feedback loops, and invariant properties over time for 
recurrent neural networks (RNNs). The area of  formal 
verification of DNNs is a rapidly evolving field with the 
promise for scalable application to industrial networks 
in the future. A survey of recent approaches and tools 
available for such analysis of DNNs is available.20

Figure 15: Virtual sensing result.

The subjective evaluation of the occupant of the  
vehicle is much more determined by local responses.18 

Siemens uses virtual sensing with cost-efficient  
and easy-to-install sensors to estimate the localized 
responses of the suspension. These responses are  
crucial input for the controller to make sure the comfort 
of the vehicle is maximized while still maintaining the 
safety requirements.

Figure 15 shows the accuracy obtained when using  
a virtual sensor to estimate the localized responses.  
The virtual sensor result (dashed black line) is compared 
with a standard and expensive sensor output (red line) 
that measures the motion of the front wheel. As can be 
seen the virtual sensor can estimate this local response 
accurately, while keeping the total solution cost price 
lower than the standard sensor. The subjective evalua-
tion of the vehicle motion is determined heavily by  
very small differences; accurate measurements of  
the localized responses are crucial to enable a   
correct  control action to maximize comfort.

Verification of neural networks
The biggest impediment to the acceptance and   
integration of DNNs in production automotive systems 
is the inability to formally verify the decisions reached 
by DNNs. During training of DNNs, a separate dataset  
of (possibly) labeled examples is used to teach the 
network the relationship between inputs and expected 
outputs. A separate validation dataset is used during 
training to tune the model’s hyper-parameters and  

Siemens Digital Industries Software

https://link.springer.com/journal/366/29/3/page/1
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Explainable AI (XAI) is an area of research that studies 
how to enable interpretation of predictions by a DNN in 
a way that is easily understood by human collaborators. 
The focus is on machine learning techniques that allow 
human users to understand, appropriately trust and 
efficiently deploy state-of-art DNNs in safety-critical or 
production environments.21 Many of the approaches 
used in XAI are also applicable to verification of DNNs,  
since the common aim is to understand and predict  
the performance of such models with some notion of  
formal guarantees. The XAI approach is also relevant for 
functional safety standards like ISO 26262 and SOTIF, 
which currently do not have a well-mapped strategy to 
verify the specifications and operating design domain 
(ODD) for components based on machine learning 
algorithms, such as perception and motion planning 
modules in autonomous vehicles.

Conclusions and further work
Safety and comfort designs and balancing are essential 
objectives in realizing autonomous driving. Several 
control methods have been proposed to tackle these 
challenges. On one side, we try to advance conven-
tional control and data-driven techniques such as  
MPC or imitation learning, and on the other side, these  
techniques can also be combined to exploit advantages 
of both worlds. Moreover, several testing methods have 
also been discussed. An efficient testing process that 
can reduce cost and effort is very valuable, and also 
significantly reduces the amount of real prototype  
tests that must be performed.

Innovation from chip to city
As a global industry leader, Siemens has a clear focus 
on innovation. With regards to transportation and 
mobility, Siemens delivers pioneering technologies  
that will radically change mobility in the near future, 
enabling electrification, autonomous driving, smart 
cities and more. With the Siemens Digital Industries 
Software solutions portfolio, manufacturers can  
deploy a digital twin approach from chip to city to  
bring complex, smart products to market faster and 

with greater confidence. Starting at the level of the 
chip, the Siemens Mentor portfolio simulates and  
emulates chip designs and delivers a validation   
and verification environment that supports realistic   
and application-specific testing to ensure security, 
functional safety, low power consumption and   
maximum performance of core electronics. At the level 
of the embedded systems architecture, Siemens Capital 
software enables integral electric, network and   
software architecture design and implementation.   
Siemens Simcenter solutions deliver simulation  
environments to optimize safety and comfort   
performance at system and full vehicle level and make  
it possible to run hundred thousands of traffic scenarios 
virtually, but also on the proving ground. Finally,  
combining forces of Siemens Digital Industries Software 
and Siemens Mobility, mobility as a service and vehicle 
to infrastructure technologies are developed and 
installed in cities worldwide. There is a strong focus  
on driving continuity and traceability of requirements, 
architecture definitions, simulation models and test 
results  throughout the entire supply chain, truly 
stretching from chip to city.

To optimize the safety and comfort performance of 
autonomous vehicles, Siemens promotes a closed-loop 
vehicle development process that consumes recorded 
data during the lifecycle of the vehicle to drive improve-
ments in the design of the vehicle and its controllers.  
A framework for continuous virtual and physical  
validation and verification enables frequent over-the-air 
software updates and regular hardware improvements. 
Simcenter offers the services, tools and methods to 
capture and crunch engineering and scenario data. 
Consequently, it offers intelligence in simulation,  
supporting generative design and turnkey massive 
validation and verification.
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