
Executive summary
This paper describes an approach to vehicle system design that uses stan-
dardized, hierarchical functions as a single level to describe electrical, 
electronic, and software content. Domain-specific implementation levels 
are then generated in a synthesis process, and evaluated using suitable 
metrics. The focus is on rapid, iterative optimization and on cross-domain 
architecture evaluation and validation
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Function-based system engineering

Functional approaches to describing and developing 
system architectures are often based on domain-specific 
languages derived from UML, such as EAST-ADL or 
SysML. At the same time, the technical content descrip-
tion (components of the system) appears in various 
forms and levels of abstraction (for example feature, 
activity, sequence, and/or status diagrams), and then 
suitably mapped for implementation.

This approach requires considerable effort and is less 
suited to architecture evaluation than to detailed docu-
mentation. Indeed, to be able to make meaningful 
technical and financial evaluations of the overall system 
architecture, each of the individual levels must be speci-
fied until a high degree of detail is achieved. In the 
subsequent mapping, the effort increases as the square 
of the level of detail: the number of artifacts within the 
individual levels, for example. 

If the calculation of the corresponding metrics is not 
sufficiently agile, evaluation of a change in function 
allocation – for example of a software component on a 
particular control unit – cannot take place soon enough 
to provide truly meaningful results for each individual 
choice to be evaluated.

Overall, this significantly hampers architecture studies. 
The provision of the necessary data and calculations of 
the desired metrics can, in certain circumstances, take 
more time than planned for the entire project!

Functional modeling
The alternative approach described here uses standard-
ized, hierarchical function models combined on a single 
level to describe the technical content of system architec-
ture. In this context, standardized means that individual 
functions can be separated from their eventual imple-
mentation as a hardware, driver, or software component. 
Instead of distributing the models across various, in some 
cases redundant, levels the individual domain-specific 
descriptions can be combined within a single functional 
abstraction, thereby eliminating the lengthy mapping 
process. Communication between individual functions is 
via signals that can be standardized as either software, 
electrical, or bus signals. All artifacts can be linked with a 
set of rules from a detailed options/variants model. The 
component models for hardware, software, and electrical 
and network communication can thereby be integrated, 
and their semantic dependencies checked and validated 
concurrently using design rules checks. 

Figure 1: SysML diagram types (taxonomy), source Wikipedia.
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In this way it is possible to capture the technical, vari-
ant-driven content of the downstream implementation 
domains (hardware, software, network, and electrical) 
as early as the functional abstraction level, and to vali-
date this content across all variants.

To illustrate this approach, figure 3 shows a number 
of functional blocks. Software functions (SW), driver 

components (D), sensors (S), and actuators (A) are 
described and displayed within a single abstraction 
level. The signals between functions are shown 
according to their required implementation in the 
colors red (SW), green (electrical signals on a PCB), 
orange (electrical signals in a wiring harness), and 
blue (signals on a network). 

Figure 2: Domain-specific processes and upstream functional architecture design.

Figure 3: Functional design.
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In figure 4 the individual type allocations correspond to 
implementation requirements for the downstream 
platform. If a function is of the software type, this 
means that the function is treated as a SW component 
in the downstream allocation to a platform: it should be 
allocated to a control unit and not to a purely electrical 
component. Note also that some of the functions and 
signals are optional, corresponding with the options/
variants model.

Functions can be organized hierarchically, and function 
signals can both reference their originating functions (if 
from an external functional design), and be made avail-
able across platforms and projects via a signal library.

Logical platform
If the functional designs are captured as described, the 
downstream implementations  (hardware and software, 

serial bus systems, and electrical distribution) can be 
created automatically, always respecting option/variant 
relationships. 

To do so, first a logical platform is defined. This can be 
derived from a 3D model in the form of a physical topol-
ogy, but can also start as an abstract logical network 
topology. Via the allocation of individual functional 
components to an options/variants model, a logical 
platform can encompass (in the example of automotive 
engineering) an individual car, a range of cars, or all 
possible derivatives of a car platform including the 
variation in software, electrical systems, network, and 
hardware. The same principle applies to trucks, offroad 
vehicles, aircraft and complex electromechanical 
machines such as industrial printers and medical equip-
ment. Indeed, an extended system-of-systems such as 
an air defense system can be modeled in this way.

Figure 4: Function diagram with various functions, option allocations and 
references on external function blocks or signals.
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The individual nodes of the platform are standardized as 
resources: electronic control units (ECUs) or line 
replaceable units (LRUs), electric assemblies, and elec-
tricity or earth conductors. They can be coupled 

Figure 5: Diagram with various software-type functions.

Figure 6: Platform architecture with the standardized function containers 
(resources) and connection pathways (carriers).
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Functions are then allocated into the logical platform. 
This can be done manually or automatically using rules. 
While doing so the functions are interrogated as to their 
type. For example, a software component is created 
from a function of the SW type, and then allocated to a 
control unit. The signals passing between functions are 
assigned to carriers as software, electrical, or network 
signals within the logical platform. 

The resulting synthesis is the integrated implementa-
tion across the four domain types (hardware, software, 
network communication, and electrical) of the func-
tional description. Semantic consistency can be ana-
lyzed in real time using design rule checks, and any 
necessary warnings or error messages generated. 

Synthesis

Figure 8: Rules for allocating functions and signals.

Figure 9: Sample diagram of synthesis implementation.

Figure 7: Rules for allocating functions.

A A A

 Do assign signal with attribute/property matching Max Latency<=10 to carrier

 Do allocate functions with attribute/property matching Name=.*_BodyFront.*

 Do allocate functions with attribute/property matching Frequency >=225

Component - ECU - Allocation Constraints

 Don’t allocate functions with attribute/property matching Type = Hardware

 Do assign signal with attribute/property matching PSF = .*_CAN23_.* to carrier

 Do allocate functions with attribute/property matching Role = Cluster Name

 Do allocate functions with attribute/property matching Maximum Latency <=0.005

 Don’t allocate functions with attribute/property matching Type = Power

        Cluster: BODY (5 of 5)
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Figure 10: Example metrics: object count, CPU utilization, network load, 
and task scheduling.

As early as this synthesis process, metrics for technical 
evaluation can be calculated. These metrics can be 
configured to show a wide variety of information. For 
example, for multiplex networks interesting metrics 
include load, tolerance, and overhead. For the electrical 
domain they include the number of wires, splices and 
connectors, wire lengths, and bundle diameter. For 
control units they include device weight, CPU load, 
requirements for RAM, ROM, FLASH/EEPROM, PCB area 
and volume power, and thermal dissipation. The metrics 
are calculated from parameters attached to functions, 
resources, and carriers: these parameters will often be 
well known from previous implementations. 

If a value is above a particular level, for example if the 
forecast requirement for RAM goes beyond the budget 
provided by the microprocessor, alerts will be issued via 
the design rule checks or directly into the platform 
architect’s graphical display. This helps the engineer 
ensure the design is feasible.

Furthermore, not just technical metrics can be calcu-
lated. By extending the calculations project goals such 
as cost, weight, headroom, reliability or re-use can also 
be reckoned.

Metrics

Platform assessment ECU CPU utilization Network load ECU task margin
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Evaluation and optimization

Because evaluation using these metrics is done in real 
time, ie when design decisions or changes are made, 
this process is ideally suited to evaluating alternative 
implementations (“architectures”), or indeed revised 
functional content. Changes are immediately reflected 
into the metrics, and alternative strategies can then be 
studied. Issues of optimum functional partitioning, 
electrical optimization, cost, and runtime optimization 
can thus be addressed iteratively and interactively. 

After the final evaluation, the results of the logical 
platform synthesis are fed into the downstream, 
detailed design process in each domain-specific format 
such as ARXML, FIBEX, or KBL. The results of the archi-
tecture study phase can thus be re-used as implementa-
tion suggestions for future platforms. In the case of an 
integrated design environment, data can of course be 
passed directly to the appropriate applications. 

Figure 11: Comparison of different expansion and optimization stages in terms of the object count, technical 
evaluation, CPU, and network traffic measurements.
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The approach described in this paper uses the func-
tional abstraction to consolidate the various E/E 
domains at a single level. This in turn allows rapid eval-
uation of implementation alternatives, while preparing 
data for use in detailed design. 

For such architecture evaluation and validation, existing 
approaches based on UML or SysML-like meta-models 
are less suitable, because of the technical effort and 
knowledge needed. The related complexity allows virtu-
ally no scope for achieving the adequate or necessary 
level of detail for a comprehensive evaluation in the 
available time. 

Commercial software based on the principles described 
in this paper is available within Siemens PLM Software 
product suite.

By contrast, the approach described uses a functional 
abstraction in which the implementation-related data 
and artifacts are combined into standardized, functional 
models, instead of distributing them across different, in 
some cases redundant levels. 

As early as during the automated allocation to logical 
platforms, the models can be iteratively validated for 
feasibility of implementation and safeguarded with 
corresponding technical and commercial metrics. The 
result of the architecture process is implementation 
suggestions for the downstream development processes 
for software, network, electrical systems, and hardware.

Tying it together

Figure 12: Functional architecture design and assessment, and resulting 
implementation proposals for downstream design flow.
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software solutions to drive the digital transformation of 
industry, creating new opportunities for manufacturers 
to realize innovation. With headquarters in Plano, Texas, 
and over 140,000 customers worldwide, Siemens PLM 
Software works with companies of all sizes to transform 
the way ideas come to life, the way products are  
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