
Executive summary
Siemens Digital Industries Software believes that today’s complex
automotive products require a systems-driven approach to product
development that combines systems engineering with an integrated
product definition and the ability to unify your product development
framework with your manufacturing and shop floor operations. To
facilitate model-based systems engineering, Siemens Digital Industries
Software provides functional networking, a consistent process-enabled
framework, advanced modeling and simulation, an intuitive user
experience and an open product lifecycle management (PLM)
environment.

Siemens Digital Industries Software

siemens.com/plm

Model-based systems
engineering
Integrated MBSE in automotive

http://www.siemens.com/plm

White paper | Model-based systems engineering

2Siemens Digital Industries Software

Contents

Overview ... 3

Functional networks .. 4
Functions drive the product’s lifecycle 4
Optimize re-use and manage evolving
technologies ... 4
Validate early in the development process 4
One model across all variants –
the 150 percent view ... 5
Managing complexity and tracking against
high-level goals – integration architecture 5
Describing the mechatronics system –
physical architecture .. 6
Configurable plant and process management –
systems-driven process throughout the
product lifecycle .. 6
Traceability and consistency – integration from
development to manufacturing and service 7

Consistent process framework 8
Connect all engineering data in a common object
data model .. 8
Leverage an open platform to facilitate use of the
“right” authoring tools ... 8
Integrate nominal and failure-mode behavior 9
Manage variability across all domains 9
Leverage program and platform management 10
Establish change and issue management
across all domains ... 10

Modeling and simulation 11
Behavioral models convert customer needs
into engineering requirements 11
Models drive early validation 11
Models support trade-off decisions 11

Immersive user experience 12

Conclusion ... 13

White paper | Model-based systems engineering

3Siemens Digital Industries Software

Overview

Twenty-first century engineering enterprises face new
challenges as they strive to create the best products in
increasingly short timeframes. For many industries,
each new generation of products is inevitably more
sophisticated and complex as new product versions
require the participation of more engineering disciplines
than ever before. Along these lines, the automotive
industry has spent the last 100 years evolving automo-
tive vehicles from purely mechanical devices to combi-
nations of mechanical parts and electronics that are
now controlled through onboard computer systems.

The continued introduction of electrical, electronics and
software components into the product development
process has created the need for more efficient and
effective integration of all participating engineering
disciplines. Previously, much of this cross-domain
knowledge was held in the heads of individual engi-
neers. But that is no longer possible.

Today’s automotive vehicles are too complex. And
because of that complexity, it takes a long time to be
absolutely sure the automotive supply chain has cov-
ered everything and understands the impact that indi-
vidual decisions are having on other aspects of the
product design or its manufacturing processes.

Unfortunately, taking extra time to get it right can
cause your resource costs to increase significantly and
your time-to-market to extend its cycle times. On the
other hand, if you rush your process too much, you end
up paying the warranty penalty. Trying to solve this
dilemma by reducing content complexity doesn’t work
either, since eliminating new features means removing
the innovations that your consumers want.

Simply put, traditional product development no longer
works. You can’t do it all manually anymore, especially
when the people you need to work with (your supply
chain) are now globally dispersed.

All of these factors combine to create a new imperative
for the automotive industry. The need to manage
sophisticated products requires a model-based process.
This is why systems engineering is a key element in the
Siemens Digital Industries Software’s vision for automo-
tive companies and their suppliers. Our systems-driven

approach to automotive product development marries
systems engineering with an integrated product defini-
tion and the ability to integrate product development
with what actually happens in your manufacturing and
assembly plants.

Siemens Digital Industries Software’s approach to sys-
tems driven product development is facilitated by the
following key capabilities.

Functional networks, a series of networks that facili-
tate the functional breakdown of your entire product,
including requirements allocated to the product’s vari-
ous functions, logical relationships defined between
these functions and the physical implementation of
these functions.

Consistent process framework, a framework that
crosses all of your product development and manufac-
turing domains and integrates your functional network
through change and issue management, configuration
management and schedule management – thereby
unifying your mechanical, electrical, software, and
electronic development domains with your process
planning and plant operations.

Advanced modeling and simulation, the ability to
derive engineering requirements from user needs and
validate that your engineering specifications fulfill these
needs early in the product development process.

Open PLM environment, a PLM-driven infrastructure
where your home-grown and commercial software tools
can be easily integrated and efficiently leveraged.

Intuitive user experience, the ability to enable all of
your product development and manufacturing/produc-
tion stakeholders to access all of the product, process
and manufacturing information that they need to intui-
tively understand your product as a complete system –
as well as to help these users, depending on their task
and role, proactively leverage this information in the
context of their job tasks.

This white paper describes on how these capabilities
can be leveraged to provide automakers with a robust
model-based systems engineering environment.

White paper | Model-based systems engineering

4Siemens Digital Industries Software

Functional networks

Functions drive the product’s lifecycle
Today’s vehicles can be seen an integrated set of func-
tions. A car has to accelerate. A car has to stop. A car
has to provide a safe and comfortable passenger envi-
ronment. These are just a few examples of the high
level functions that a vehicle has to provide.

These high level functions can be broken down –
decomposed – into lower levels of more specific,
detailed functions that eventually are delivered or
implemented by physical components. Most of the
functions of today’s cars are the same from one vehicle
to another – and have been for years (of course that is
now changing with the advent of electric vehicles).

What makes each car unique is the set of requirements
that are applied to these functions. How fast does the
car have to move? What is its required stopping distance
and from what speed? How safe does the passenger
compartment have to be? And, how comfortable? The
answer to all of these questions can be found in the
vehicle’s requirements.

Requirements are allocated (related) to specific func-
tions so that product teams understand what criteria
to use when designing specific functions. And of
course, requirements and functions have dependencies
between each other that need to be understood so that
proper trade-off decisions can be made. If the car is
required to have a top speed of 175 mph, then that
speed has an impact on the function of stopping the
car – and has to be understood since that particular car
is going to need really big brakes!

Basically then, all of these dependencies have to be
modeled and understood so that as design decisions are
made, the car’s relationships and dependencies can be
evaluated – and the best possible design will be
developed.

The way functions will be implemented is defined in a
logical architecture. Logical models can, and often do,
exist at each level of the functional decomposition –
and they define how the different functions interact
with each other. In electrical terms, this would be
expressed in a diagram that indicates what inputs and
outputs on one device are connected to specific inputs
and outputs on another device.

Siemens Digital Industries Software’s model-based
systems engineering solution provides a complete set
of capabilities to put all of this together – the func-
tional model, allocated requirements and the logical
model – in functional networks where all relationships
and dependencies are defined and understood
throughout the entire vehicle.

Optimize re-use and manage evolving technologies
Sixty to 80 percent of a vehicle is functionally the same
from one vehicle to the next. Logically, the way the
functions interact is fairly similar as well (again, note
the electric vehicle exception since electric vehicles will
cause new models to be constructed from both a func-
tional and logical perspective). Requirements can come
from many places, including customers, regulatory
bodies, government, internal development standards
and manufacturing best practices. Product teams collect
these requirements and manage them as individual
objects. This object approach allows requirements to be
related to one or multiple functions that they affect,
even when these functions cross different vehicle pro-
grams. Requirements also determine variation in the
functional and logical models as they might require new
features or different technologies.

Systems engineering plays a crucial role in facilitating
an effective requirements process. Since requirements
originate from many different sources, they need to be
evaluated, refined and ultimately focused on a particu-
lar vehicle platform or program. As the product team
moves from a very coarse definition of the vehicle at
the concept level to a fine-grained or detailed represen-
tation at the component level, the vehicle’s require-
ments, functions and logical models are also refined,
gaining more detail and granularity as they move down
the development side of the system’s V.

Validate early in the development process
The resulting functional networks and the interactions
between product functions describe the interfaces and
constraints that eventually will be implemented by
various organizational domains (mechanical, electrical,
software, manufacturing process, risk, reliability, cost,
service, and disposal). This network includes descrip-
tions of the interfaces. In conjunction with exchanged

White paper | Model-based systems engineering

5Siemens Digital Industries Software

inputs and outputs, these interfaces – as well as the
functional definitions, and their related performance
data – are required to validate the behavior of each
function. For example, consider a sun roof that auto-
matically closes when it starts to rain. This capability is a
high-level function that is allocated to the components
necessary to carry out that function – the motor, sen-
sors, ECU, mechanical parts, wire harness, and other
equipment. The functional description, in conjunction
with logical definition, is the basis for creating behav-
ioral models that simulate the function as well as its
interdependencies to other functions.

One model across all variants – the 150 percent view
The result of this process is a complete functional model
of an entire system (also known as the product plat-
form). This “150 percent model” covers all possible
product configurations – including combinations that
may not be actually produced. Since this model
describes the logical interaction of the vehicle at differ-
ent granularity levels (such as the system and subsys-
tem level), it can play a crucial role in helping the
product team to find conflicts that potentially have
escaped notice and might cause extra expense, late
re-design or worse, field recalls.

Many different models are required to refine functions
and gain important insights, including: signal analysis,
energy transfer diagram, state diagrams, FMEAs, EMI/
EMC, network diagrams, fault trees, behavior and man-
ufacturing processes to name just a few. The end result
is a specification for the product’s physical elements.

Managing complexity and tracking against
high-level goals – integration architecture
Vehicle programs are evaluated in terms of their ability
to achieve goals that, ideally, are formulated as measur-
able targets – such as fuel economy, vehicle mass or
safety. In system-driven product development, these
vehicle-level targets are decomposed (“engineered”)
into targets for subsystems or specific vehicle properties –
such as engine parameters, transmission parameters,
mass and aero drag. This translation is refined from
high level parameters for subsystems to increasingly
detailed parameters of the subsystem components
based on heuristic or quantitative models that are con-
tinuously refined to describe these dependencies as
accurately as possible.

Braking
 energy

Regnerative
exhaust

Regnerative
braking

…

…

F

F

F

F

Friction brake torque

Available regenerative torque

Reduction gear ratio

Motor torque
Several
allocation
scenarios

A

A

A L

L L L

L

Vehicle
control

Clutch control component

Motor control
component

Power bus
component

Torque
component

Gear box
component

Logical
components
registration

Function allocation
scenario evaluation

Members of
regenerative braking
functional partition

Functional partitions
Powertrain Chassis BodyFuel economy

Vehicle system integration arhitecture Vehicle physical arhitecture

Electrical
motor

Controller

Transmission BatteryEngine

…

…

…

…

…
…

Controller
model

White paper | Model-based systems engineering

6Siemens Digital Industries Software

This refinement of high level targets to lower level
targets creates a structure that ultimately enables indi-
vidual engineers to understand how changes that they
make to a component or subsystem impact the goals of
the vehicle program. This structure also allows the
program manager to track if the program is “on target”
for its high level goals. If it is not, the structure enables
the program manager to determine what causes the
deviation and how it can be compensated. This struc-
ture is called the “integration architecture.”

Even if a vehicle has thousands of requirements and
functions, only a small number of these are associated
to each of its elements. The integration architecture
enables engineers to manage this level of complexity
while understanding how it contributes to the perfor-
mance of the whole system.

Describing the mechatronics system –
physical architecture
For mechatronics systems like today’s automotive vehi-
cles, the physical architecture contains all mechanical
components and assemblies, the electrical architecture
(including ECUs, sensors, wire harnesses and corre-
sponding schematics), signals and messages, as well as
the complete software bill of materials (including boot
loaders, application software, configuration files, cali-
bration data). Logical and functional components are
associated to the physical architecture. For example, a
behavioral model for the function of the electric sun
roof is associated with the corresponding elements in
the physical architecture so that engineers can under-
stand how a changed part or software component
might require the underlying behavioral model to be
updated and re-validated.

The integration architecture and the physical architec-
ture organize the requirements, functional, logical, and
physical view of the vehicle so that complexity at the
lowest level is manageable even if mechanics, electron-
ics and software are all involved. These factors are also
highly re-usable from one vehicle program to the next
and across multiple vehicle platforms.

Configurable plant and process management –
systems-driven process throughout the product
lifecycle
The systems engineering process extends into manu-
facturing, including designing, validating and testing
production processes and manufacturing equipment
needed for a particular product. The translation of man-
ufacturing requirements into the equipment and opera-
tions definition and driving validation through virtual
commissioning is analogous to the systems engineering
process for product design.

The process starts by identifying manufacturing require-
ments based on the product definition (in the example
below requirements for the sheet metal used for the
engine compartment). From the product definition
(which is mostly a combination of 3D CAD and PMI
data), product teams can derive specific requirements
for the production of the detailed product design. Once
these requirements are understood, the product team
might identify an existing plant where the vehicle will
be produced or select the most applicable plant if addi-
tional equipment will be needed.

Once the equipment has been defined, the process
continues with the definition of work orders, the equip-
ment BOM and layout, which then serve as a basis for
developing and validating the required automation for a
given production line or cell. At each step of this pro-
cess, the product team will perform some form of vali-
dation based on associated product and production
requirements. It is important to validate both the prod-
uct and production requirements (for example, finishing
tolerance of the parts is a product requirement that can
only be validated during production definition).

Siemens Digital Industries Software’s approach to
model-based systems engineering takes the physical
aspect of all dimensions of the design into account
– including parts, physical design, processes, plants and
the actual physical vehicle represented by a VIN num-
ber. This comprehensive approach is known as the
RFLP5 method.

White paper | Model-based systems engineering

7Siemens Digital Industries Software

Traceability and consistency – integration from
development to manufacturing and service
Applying the functional network across the entire prod-
uct lifecycle, including manufacturing and service, helps
remove the “work and reconcile” tasks that occur in
most vehicle development programs. Today, gates or
milestone reviews provide an opportunity to bring
everyone together and reconcile the integration of all
the pieces that must work together to deliver the func-
tion. Our functional networks enable you to build-in an
integration framework from the beginning. This enables
you to align all of your functional organizations at any
point in the development process, not just at certain
milestones.

In addition, the physical design can also act as a tem-
plate, bringing automation and knowledge re-use into
the model. Template values can be derived from
requirements or other relationships and dependencies.
Rules can be applied through templates that ensure
boundaries established by related requirements are
automatically checked and flagged if an invalid condi-
tion is encountered.

Traceability

Knowledge re-use

Logical

Physical
design

Requirements

Part

Process

Plant

Physical

Functional

White paper | Model-based systems engineering

8Siemens Digital Industries Software

Consistent process framework

In order to make the systems-driven approach work
consistently for every engineer, Siemens Digital
Industries Software’s model-based systems engineering
solution provides five key capabilities, including:

Ability to connect all engineering data in a common
data model, which facilitates a deep understanding of
dependencies created in the functional and logical
architecture.

Open PLM platform for interacting with specific
authoring tools, which enables product teams to
interface with a variety of authoring tools across
multiple domains.

Ability to minimize variability across all domains, by
establishing one common, consistent product configu-
ration framework for all engineers.

Common program and platform management, which
drives the PLM process in a single program context from
program initiation to service

Change and issue management across all domains,
which ensures complete traceability throughout the
PLM process.

Connect all engineering data in a common
object data model
Driving the development process through functions
creates consistency between your mechanical, elec-
tronic, electrical and software processes. Each domain is
able to use a different set of methods and tools, while
sharing the product functions and leveraging a common
definition that engineers can work with on a cross-
domain basis.

However, the dependencies between engineering
domains can go very deep into the actual design data.
For example, an electrical designer will develop a sche-
matic for a wire harness based on the function defini-
tion. This schematic contains all of the information
about the components that interconnect. Nevertheless,
the engineer will have to make an assumption on the
length of the connectors. Later, another engineer will
design the actual routing of the cables, determining the
actual length. This information is important for the
electrical engineer. With this in mind, the system-driven

product development solution needs to provide a data
model that represents the schematic and is able to link
parameters in the schematic to parameters of the actual
“mechanical” design of a wire harness.

Siemens Digital Industries Software addresses these
needs by providing an open, standards based PLM solu-
tion with a single source of product and process knowl-
edge and a common data object model that can be
leveraged across multiple engineering domains.
Openness means two things:

• Providing a design data model based on open
standards wherever possible

• Supporting and driving integration with domain
specific design tools

Working with our PLM-enabled framework, individual
development teams can retain their focus by continuing
to use their mechanical, electrical, electronic or soft-
ware design methods and tools of choice, while work-
ing together in-context to meet overall development
goals. This approach enables them to achieve higher
product-related quality goals and safety requirements,
which result in lower warranty cost, better customer
satisfaction and shorter time-to-market.

Leverage an open platform to facilitate use
of the “right” authoring tools
No supply chain, user community or technology vendor
starts fresh. Established ecosystems of software tools
already exist. It is not realistic to require your engineer-
ing and manufacturing domains to adopt new tools as
you implement your system-driven product develop-
ment solution. As a result, you will need an open PLM
environment that enables you to consolidate a data
model based on open, published standards.

Siemens Digital Industries Software provides the follow-
ing integrations to today’s most widely used authoring,
design and diagnostics tools to ensure the consistency
of your PLM-driven processes.

Mechanical lifecycle, including support for major
MCAD tools such as NX™ software, Catia, Pro-E,
SolidWorks, SolidEdge® software and Inventor.

White paper | Model-based systems engineering

9Siemens Digital Industries Software

Electronics lifecycle, including integrations with ECAD
PCB design tools from Mentor, Cadence, Altium,
Intercept, and a gateway for other EDA tools (Zuken and
Protel) Teamcenter® Simulation Process Management
software is used to integrate and manage multi-CAD
part libraries, maintain links to vendor data, facilitate
compliance management, support check-in/check-out
and manage native design archives, fabrication and
assembly data, derived files and extracted BOMs.
Teamcenter also is used to facilitate native ECAD data
visualization and design for assembly (DFA) processes
that automatically validate a design against assembly
rules to improve manufacturability.

Software lifecycle, including supporting source code,
software design elements, parameters, binaries and
hardware as part of the same product structure and
linking this product structure to requirements and their
dependencies across multiple engineering domains.

Within each engineering domain, the cycle of design,
validation and test is executed based on the common
PLM backbone. Domain-specific requirements are trans-
formed into a detailed design and then validated
against the requirements outlined for that domain.

Integrate nominal and failure-mode behavior
Most engineers automatically focus on the “working”
(nominal) behavior of the product, and less on the “not
working” behavior (failure modes). One of the reasons
the latter is harder to do is that understanding, simulat-
ing and testing against failure modes is not possible
without a systems perspective. Model-based systems
engineering directly supports failure mode and effects
analysis (FMEA).

FMEA can provide an analytical approach when dealing
with potential failure modes and their associated
causes. When considering possible failures in a
design – like safety, cost, performance, quality and
reliability – engineers can get a lot of information about
how to alter the development/manufacturing process in
order to avoid these failures. FMEA is an easy way to
determine which risk raises the greatest concern,
thereby identifying a potential problem before it arises.

Manage variability across all domains
Variability occurs everywhere in the development pro-
cess: at the user requirements and functional network
levels, within the logical architecture and across all of
your engineering domains.

Robust cross-domain traceability has to be able to man-
age the variability in the interrelationships between
requirements, functions and logical components, e.g.,
which versions of which requirements apply to which
versions of which functions performed by which ver-
sions of which components, assembled in this factory
for this customer. A variety of different variables can
affect configuration including customer features, envi-
ronment variables and engineering and order release
status. Configuration and multi-domain navigation must
be able to combine different kinds of variables in the
right context to find relevant results quickly.

For example, analysis of a simulation may show that a
sun roof does not close properly at 100 mph. To under-
stand the results, engineers may want to view all the
components in the product that specifically configure
together with a sun roof. But they may also need to
look further, since some components which may affect
the sun roof operation (such as a roof support bar
assembly) are always in the product when configuring
engineering design options and may not show up with a
specific configuration expression as direct as “sunroof =
yes.”

Relevance can be determined by many different condi-
tions involving a combined configuration of require-
ments, functions, logical components, and designs,
such as:

• Sharing a common variable expression such as
“sunroof = yes”

• Configuration rules which imply a common variable
expression such as “if ’model= sport_xyz’ then
‘sunroof = yes’ ”

White paper | Model-based systems engineering

10Siemens Digital Industries Software

Overlap in related functions or requirements can be
relevant to the same logical component configuration.
For example, functions for protecting the occupant
during a crash might include a specific reference to a
particular roof support component implemented by
a specific design assembly re-used from a previous
program without a sun roof. Multi-domain configura-
tion combines configuration requests within domains
(i.e., to find all requirements relevant to a particular
program) and configuration for related data across
domains.

To illustrate the concept of variant management,
consider the following example; as part of the sun roof,
two options are available – manual control and control
based on a rain sensor. As illustrated below, these
options can be mapped to an option package (e.g. trim
level) called Basic and Fully Loaded. As users work their
way through the model-based systems engineering
process, they will be able to consistently refer to the
option values that are defined as part of the product.

Leverage program and platform management
Program management supports enterprise project
planning and execution. Team performance is enhanced
through real-time and goal-directed collaboration.
This form of organized collaboration should be available
to all layers of the organization including your value
network of suppliers and customers.

The integrated program management functionality
in Siemens Digital Industries Software’s model-based
systems engineering solution includes capabilities for
managing programs and their individual projects, allow-
ing organizations to establish best practices and support
continuous improvement. Real-time interaction among
groups and members from distributed locations on
specific business objectives and critical deadlines is
enabled.

Program management is more than just establishing
schedules and managing tasks. It also facilitates product
platform configurability. In many companies, only a
very few team members understand and control the
variant data in their business systems.

CAD designers and part engineers are not expected to
author the correct variability without guidance,
although they must be aware of variability to support
their design. Siemens Digital Industries Software’s solu-
tion enables configuration experts to define-in variabil-
ity using nomenclature that designers already
understand. This use of the product architecture
enables individual companies to use unique taxonomy
to define their generic parts or modules. These generic
parts are placeholders for design and can include parts
that may not yet exist.

Establish change and issue
management across all domains
System-driven product development process must be
able to manage the complexities of product variation by
accurately representing the “whole product” bill of
material and common architecture breakdown for the
product line – including software and electronics – for
all product configurations. To address these needs,
Siemens Digital Industries Software’s solution provides:

Context management, including unique capabilities to
simplify design collaboration by defining, managing and
sharing working contexts for product development.

Change management, including a common infrastruc-
ture to consistently manage change across multiple
domains and different development stages.

Lifecycle representations, including the ability to
associatively define and relate multiple BOM represen-
tations of the product structure for different lifecycle
stages or processes.

Option and variant capabilities, including the ability
to organize products into modules and marketing
options; thereby facilitating faster response to market
opportunities and increased product/part re-usability.

White paper | Model-based systems engineering

11Siemens Digital Industries Software

Modeling and simulation

Early, virtual validation enables product teams to lever-
age models as much as possible instead of tying them
to physical artifacts. Models can be used to represent
component, subsystem, system, and product-level
behaviors. Models serve three important purposes
within model-based systems engineering by letting
product teams:

• Covert marketplace and customer needs into
engineering requirements

• Drive early validation

• Accelerate trade-off decisions to the early stages in
product development

Behavioral models convert customer needs
into engineering requirements
Models play a critical role in cascading customer needs
down into engineering requirements. For example, a
customer-driven need might be to reduce vibration
during engine idling. The customer usually perceives
vibration in the steering wheel and in the seat. In addi-
tion, perception to vibration can vary with vibration
frequency.

How then can the customer need for a smooth idling
experience be translated into engineering requirements
for the suspension and the suspension bushings?

Systems-level models can play a very useful role in this
process. Models can be built to capture the frequencies
of the main subsystems. The model is then excited with
frequencies corresponding to engine idle. Through a
process of adjusting the model parameters, engineers
can arrive at targets for the subsystems and subse-
quently for the components that comprise the system.

Models drive early validation
A second important role that models play is in validating
the design to ensure that the requirements have indeed
been met. Often these models are more detailed and
provide higher fidelity information.

Models support trade-off decisions
The third important role for models is to enable the
right trade-offs to be made between conflicting require-
ments. Continuing with our earlier example, the sus-
pension bushings also need to satisfy requirements
arising from vehicle handling and rough road impact
considerations. The most effective way to consider
multiple requirements and their trade-offs is through
simulation.

Several hurdles must be overcome to make the process
efficient. Siemens Digital Industries Software’s approach
to simulation is specifically designed to overcome these
challenges and make engineers more productive by
providing integrations, simpler access to geometry data,
and a consistent data model:

Integration Integration with other simulation tools and
with product development applications is important to
both the efficiency and effectiveness of a model-based
systems engineering solution. Integration is a core
philosophy that permeates Siemens Digital Industries
Software’s simulation solutions.

Simplified geometry format Analysts often need to
edit models but lack of expertise in knowing how to
work with complex CAD geometry. Siemens Digital
Industries Software addresses this dilemma by providing
a data model that separates design models from analy-
sis models while providing tools that enable analysts to
modify geometry without having to master the intrica-
cies of CAD technology. When the design is changed,
analysis models and results can be updated automati-
cally. This dramatically reduces the amount of time it
takes to extract information, use the simulation, process
results, and feed this information back into the design
process.

Consistent data object model In model-based systems
engineering, the true value of simulation is not limited
to islands of automation but ripples downstream in the
product lifecycle through re-use of the simulation
results, as well as other CAE-derived knowledge. To
facilitate this, Siemens Digital Industries Software pro-
vides the right integrated tools for your PLM environ-
ment – tools that enable you to capture, update, and
share relevant engineering data and product knowledge
across you entire global enterprise and supply chain.

White paper | Model-based systems engineering

12Siemens Digital Industries Software

Immersive user experience

The rich information that model-based systems engi-
neering provides must be at the fingertips of every
person involved in your product lifecycle. Information
needs to be provided intuitively, in accordance with the
context and situation of the engineer, focused on the
business activity at hand and leveraging the geometric
model:

With this in mind, Siemens Digital Industries Software’s
system-driven product development solution is:

Intuitive Users should feel comfortable interacting with
the PLM-enabled environment. Our solution under-
stands each user’s role and presents information to the
user commensurate with tasks associated with that role.
This information is intuitive since it is consistent with
the training and expectations of the user’s role.

Context and situational sensitive When a user initiates
any activity in a model-based systems engineering
environment, our solution will identify a body of infor-
mation as being critical to support that activity. In addi-
tion, as the activity progresses, further information can
be identified as critical to the successful completion of

the activity. The user’s productivity is optimized as our
software automatically manages the context that deter-
mines the scope of this information.

Activity focused When a user performs an activity, our
solution will invoke business processes that provide
context to its execution. In certain instances, this might
be a higher level process that defines specific actions
that will take place. In other cases, the process may
actually execute the activity. Our solution anticipates
the user’s need for information and application usage.

Intelligent in terms of its geometry As a design
matures to the point where actual product geometry is
created, users must be able to use the geometry model
to interact with and validate the system model in mean-
ingful ways. Our solution provides geometric product
models with a fully functional window into the interre-
lated functions and requirements that helped define
that geometry. These models can also serve as a critical
input to more advanced validations of the system’s
performance.

White paper | Model-based systems engineering

13Siemens Digital Industries Software

Conclusion

Siemens Digital Industries Software provides the foun-
dation to
support system-driven product development through-
out your enterprise including capabilities that enable
you to:

• Capture the voice of the customer

• Support your design, manufacturing and service
operations

• Facilitate enterprise program management,
change and issue management and configuration
management

• Ensure consistent data and business processes

Our open architecture is a necessary prerequisite to
facilitating consistency in the real world – enabling you
to integrate your processes across all engineering and
manufacturing disciplines, leverage specialized design
and simulation tools of choice and quickly adopt meth-
ods and rising innovations that nobody anticipates
today but may become a future de facto standard.

Siemens Digital Industries Software

Headquarters
Granite Park One
5800 Granite Parkway
Suite 600
Plano, TX 75024
USA
+1 972 987 3000

Americas
Granite Park One
5800 Granite Parkway
Suite 600
Plano, TX 75024
USA
+1 314 264 8499

Europe
Stephenson House
Sir William Siemens Square
Frimley, Camberley
Surrey, GU16 8QD
+44 (0) 1276 413200

Asia-Pacific
Unit 901-902, 9/F
Tower B, Manulife Financial Centre
223-231 Wai Yip Street, Kwun Tong
Kowloon, Hong Kong
+852 2230 3333

siemens.com/plm
Restricted © Siemens 2019. Siemens, the Siemens logo and SIMATIC IT are registered trade-
marks of Siemens AG. Camstar, D-Cubed, Femap, Fibersim, Geolus, GO PLM, I-deas, JT, NX,
Parasolid, Polarion, Simcenter, Solid Edge, Syncrofit, Teamcenter and Tecnomatix are trade-
marks or registered trademarks of Siemens Product Lifecycle Management Software Inc. or its
subsidiaries or affiliates in the United States and in other countries. All other trademarks,
registered trademarks or service marks belong to their respective holders.

24063-C11 6/19 Y

About Siemens Digital Industries Software
Siemens Digital Industries Software, a business unit of
Siemens Digital Industries, is a leading global provider
of software solutions to drive the digital transformation
of industry, creating new opportunities for manufactur-
ers to realize innovation. With headquarters in Plano,
Texas, and over 140,000 customers worldwide, we
work with companies of all sizes to transform the way
ideas come to life, the way products are realized, and
the way products and assets in operation are used and
understood. For more information on our products and
services, visit siemens.com/plm.

14

http://www.siemens.com/plm

