
Executive summary
Today’s most exciting and innovative automotive features are enabled by
immensely complex and sophisticated embedded software applications.
Modern vehicles contain hundreds of millions of lines of code that govern
dozens of systems. Automotive software engineers are being asked to
manage this immense complexity to deliver simple and intuitive user expe-
riences for the end consumer. As engineers develop application code and
perform quality assurance tests, they will need a unified platform that
provides clear visibility to design requirements, key system attributes and
constraints, and even down to individual lines of code.

Piyush Karkare
Siemens Digital Industries Software

Siemens Digital Industries Software

siemens.com/aes

Orchestrating
automotive embedded
application development
Application development and quality
assurance

White paper | Orchestrating automotive embedded application development: Application development and quality assurance

2Siemens Digital Industries Software

Large-scale trends in the automotive industry are mak-
ing embedded software development more fundamen-
tal to vehicle development overall. Vehicle automation,
connectivity, electrification, and shared mobility (ACES)
are driving a need for remarkably sophisticated soft-
ware to enable features like advanced driver assistance
systems (ADAS), battery management, vehicle-to-every-
thing (V2X) communication, and more (figure 1).

To maintain pace with these trends, carmakers and
executives are on a path of vertical integration, with the
goal of bringing software development, among other
key technologies, in-house. Suppliers also face stiff
competition to deliver compelling vehicle features that
involve substantial software development. As OEMs and
suppliers attempt to evolve their core competencies to
include software, they encounter significant challenges.

The software being developed for modern vehicles
needs to be state-of-the-art, especially for automated
safety and driver assistance features. Furthermore, the
software must be nearly infallible in reliability and
functionality.

Exciting automotive features require very complex
software, resulting in a massive increase in the com-
plexity of in-vehicle software overall. Today, vehicle
software content commonly exceeds 150 million lines
of code. The individual complexity of software applica-
tions is compounded by the interactions between vehi-
cle systems that require these software applications to
communicate and interoperate. Automotive software
engineers are being asked to manage this immense
complexity to deliver simple and intuitive user experi-
ences for the end consumer.

Figure 1: The trends of autonomy, connectivity, electrification, and shared mobility are driving a demand for automotive software.

Introduction

White paper | Orchestrating automotive embedded application development: Application development and quality assurance

3Siemens Digital Industries Software

Software engineers are already deeply involved in the
development process as they start to evaluate changes
and systems updates with software architectures and
construct software models to prove out the functional-
ity required by the system level definition. Many OEMs
and suppliers have adopted a model-driven software
development approach for their application develop-
ment. The architecting and modeling processes are
intended to verify and validate the software’s function-
ality before any code is written or modified. The key
challenge is orchestrating the activities of all engineers
across the data flow passively, without relying on man-
ual effort to maintain data consistency.

Automotive embedded software engineers also must
meet particularly strict safety regulations that affect
both the finished software-build and the development
process. It is important that engineers can audit respec-
tive design decisions, test plans, test results, and rel-
evant data created over the development. This digital-
thread is needed as evidence for software compliance
with required regulations. Given the intricacy and pace
of software development, it can be very easy to lose
track of this information when trying to meet deadlines
or resolve issues.

The development of automotive embedded software is
only becoming more challenging as vehicle features rely

more heavily on complex software applications.
Embedded software teams need a means of managing
the software development lifecycle, from planning
through development and delivery, which can interact
with product lifecycle management (PLM) and other
needed engineering solutions to provide a unified
development platform (figure 2). During application
development and quality assurance (QA), teams should
have clear visibility to design requirements, key system
attributes and constraints, and even down to individual
lines of code. Such a platform will provide full traceabil-
ity to ensure regulatory compliance, and promote func-
tional reuse and collaboration across the involved engi-
neering domains.

Key challenges
A major challenge during application development is
the inconsistency between software and product devel-
opment processes. OEMs usually use vehicle milestones
to track system-level vehicle features, changes, and
updates. Meanwhile, software development is accom-
plished through fast-paced AGILE and hybrid AGILE
flows. The discrepancy between these development
methodologies can create checkpoint issues that hinder
progress. For example, the software teams may have to
wait for system-level updates that may not be available
until the next milestone. Likewise, software teams may

Figure 2: Automotive embedded software engineers need a unified platform to track and manage application development.

Embedded application development
becomes more challenging

White paper | Orchestrating automotive embedded application development: Application development and quality assurance

4Siemens Digital Industries Software

be under pressure to produce a build for the next mile-
stone, compromising quality to meet a deadline.

Additionally, conflicting development methodologies
complicate the traceability and visibility of information
across teams. During testing, especially hardware-in-
the-loop (HiL) or driver-in-the-loop (DiL) testing, it is
critical that software teams know what they are testing
and, more importantly, why it is being tested. This
includes knowing what changes have been made to
which data artifacts, which software-builds are ready to
use, and which hardware abstraction levels are required
for the software-builds being verified and validated. In
the other direction, the teams responsible for imple-
mentation need visibility to testing results so they can
make updates and resolve issues uncovered in testing in
a timely and efficient manner.

While automated code generation can help teams
become more agile by integrating software modelling
and coding, a clunky and segmented data-management
solution increases risk during integration and coordina-
tion, erasing any time savings realized. Engineers need
code implementation to be consistent with up-to-the-
minute hardware and system-level constraints. This
demands an auditable change management process
that allows engineers to update application builds in
real-time in response to testing results.

An auditable change management process that spans
product and software engineering is critically important
for ensuring regulatory compliance. First, it needs to
ensure that software teams can quickly respond to new
or ambiguous regulations that affect software function-
ality. Second, change management needs to guarantee
that the OEM possesses the needed evidence to demon-
strate compliance with regulations.

Achieving a flexible implementation and verification
process is not only up to the engineers writing code.
Software testing and its coverage must be driven by
requirements and triggered earlier in the development
cycle. Detecting defects early across many implementa-
tions is extremely advantageous, as defects only
become more expensive the later they are found.
Application designs should be modelled, simulated, and
executed early on to optimize and validate the concept
against design requirements, architectural constraints,
and system behaviour. Executing early hardware-soft-
ware co-simulations in the context of the system will
help the software engineers to uncover issues and
defects earlier in the development process.

After a round of testing has been completed, imple-
menting the recommended changes can be time-con-
suming. This is especially true if the implementation
team must sort through complicated testing results to
determine what they are being asked to fix. Supplying
precise documentation and traceability to requirements
and system constraints to the relevant teams and stake-
holders will facilitate quick and accurate solutions.

Finally, comprehensive traceability, from system-level
changes down to individual lines of code, is often
undermined by constant changes and updates. Keeping
a clear line of sight throughout the development pro-
cess becomes increasingly complex as software content
and dependencies across multiple features grows. This
issue is only amplified if engineers must navigate sev-
eral unintegrated tools to maintain traceability.
Solutions that rely on spreadsheets, databases, and
home-grown connections are complicated and do not
scale with organizations.

White paper | Orchestrating automotive embedded application development: Application development and quality assurance

5Siemens Digital Industries Software

Solutions are available today that help track and man-
age the complex and concurrent tasks involved in the
application development and quality assurance process.
These solutions can provide the comprehensive trace-
ability and visibility needed for embedded application
development. Let’s walk through the development of an
embedded application with a development coordination
solution in place (figure 3).

Functional design and modeling – leveraging models
and tested software components for coding
Software teams create robust software component
architectures, software models that represent true
functional twins of the needed behavior, and model
interactions that ensure the completeness of the
needed communication to define and validate the soft-
ware application elements before any coding is com-
pleted. Software architects and engineers usually use
dedicated tools like MATLAB or SIMULINK to complete
this work. Modern software development coordination
solutions feature extensions to these tools, providing a
direct connection between the architecture, models,
requirements, test methods, loss-analysis, safety com-
pliance and more. As deliverables become mature, the
software development solution will track the progress
and consistency of models, architecture, and compo-
nent interactions in relation to the application require-
ments and constraints. This also ensures coverage of all
the requirements, specifications, and behaviors with

model representation associated to a robust architec-
ture that accurately depicts all the interactions between
components.

A unified platform for application development helps
software engineers to ensure consistency across the
functional architecture and allows different teams to
make informed architectural trade-offs. Such a solution
also automatically tracks that models meet application
requirements and provides traceability between the
models and the relevant requirements. As a result, engi-
neers can more effectively leverage mode-based soft-
ware development to identify issues early and maintain
consistency during downstream processes (figure 4).

Figure 3: Application development and quality assurance in the overall application development flow.

Embedded application development and
QA with a unified platform

Figure 4: A unified application engineering platform supports architecture
and modeling processes by ensuring traceability from requirements to
software architectures, models, and more.

White paper | Orchestrating automotive embedded application development: Application development and quality assurance

6Siemens Digital Industries Software

Software modelling validates that system needs are met
before engineers invest considerable time in actual
coding. The application development platform can be
configured to automatically assign these coding tasks to
team members based on customizable conditions that
can be determined on a project basis. As engineers
complete these tasks, the application development
platform can monitor progress with extensions to the
software code management (SCM) solution and inte-
grated development environment (IDE) of choice. The
application development platform can also track adher-
ence to non-functional requirements via integrations
with various code performance (static and dynamic)
and code-coverage tools.

Tightly orchestrated and consistent software modeling
practices not only speed up the process, but can also
instill methods such as SOTIF (Safety of the Intended
Functionality) to ensure that the software is working as
intended, and hazards are prevented by-design.
Incorporating SOTIF methods complements standard
functional safety approaches that mitigate risks by
employing safety goals that assume faults will occur.
This combination produces exceptionally robust auto-
motive embedded software applications.

Code implementation and integration
The application engineering platform enables engineers
to integrate modelling and code implementation activi-
ties, removing duplicated effort between model cre-
ation and coding. A direct connection from require-
ments, to models, to code, and to testing ensures that
implementations can be verified as they mature. Such a
connection also guarantees that implementations are
always up-to-date with constraints and changes from
the system-level definition, hardware specifications,
and more. An application development platform also
provides auditable change control processes, facilitating
flexible code updates in response to model-, software-,
hardware-, or vehicle-in-the-loop testing (figure 5).

Iterative planning tools help embedded application devel-
opment teams efficiently budget their time and track
when tasks are completed to keep development moving
on schedule. The platform can be configured to require
electronic signatures to perform certain actions or process
steps, ensuring that key stakeholders review and approve
decisions. The embedded application development plat-
form can also track accountability for change analysis and
implementation, allowing teams to check that a software
release or build is well supported for planned updates
with full traceability to all modified data-artifacts and the
rationale behind each modification.

The planning solutions also feature team velocity man-
agement to provide estimations for task completion
based on empirical data. Multiple estimation method-
ologies are supported, including time, money, and story
points. Team leaders or application owners can define
the conditions for a completed workflow. For example,
a workflow will only be marked complete if documenta-
tion is submitted. Users can also attach supportive
documentation, such as component and design require-
ment specifications, to ensure functional and quality
consistency.

Quality assurance
Quality assurance is a predominantly continuous pro-
cess that starts early on and is performed as require-
ments, architectures, models, and code implementa-
tions are developed and matured. Quality assurance is
the sum of testing at multiple abstraction levels such as
model-in-the-loop (MiL), software-in-the-loop (SiL),
hardware-in-the-loop (HiL), and vehicle-in-the-loop
(ViL), which includes both virtual HiL and physical test-
ing at the proving ground. This iterative testing flow
can be orchestrated to assess software quality at each
stage of development, and as design changes are imple-
mented. This type of testing regime also promotes
model-based software design flows by enabling engi-
neers to manipulate and verify software models early in
the development process as needed.

However, as engineers develop and test software archi-
tectures, models, and actual code, they are constantly
creating new data that must be tracked and associated
to the appropriate software build or configuration. For
each round of testing, software engineers must create
or update test plans that detail the test case, test-execu-
tion strategy, test vectors, and other related data arti-
facts. As tests are completed, issues must be assigned

Figure 5: A unified platform for application development coordination
enhances task management, accountability, and change management
while supporting Agile development methods.

White paper | Orchestrating automotive embedded application development: Application development and quality assurance

7Siemens Digital Industries Software

and resolved while test results are linked back to the
relevant test runs. These data associations are crucially
important to demonstrate test coverage and support
complete traceability from requirements to
implementation.

Organizing and tracking the testing value-chain (test
plans, test cases, test results, related data-artifacts, and
the status of identified issues and risks) escalates the
challenge and importance of overall software develop-
ment orchestration. There is a lot of data with intricate
interrelationships that needs to be tracked and man-
aged. Burdening the engineers with data tracking and
managing prevents them from focusing on software
engineering and development. Software teams must
also coordinate the delivery of applications, along with
all associated data, to final builds. Key capabilities in
today’s application development and coordination plat-
forms can help manage this complexity to ensure the
quality of delivered application binary and associated
data (figure 6).

Application development and coordination platforms,
such as Polarion, feature integrated test management
tools. Using these tools, engineers can create and link test
cases to the corresponding work item. Work items may
include application requirements, change requests, other
test cases, and more. The test management tools enable
the steps of each test case to be modified, separating the
test specification and test-item configuration to enable
greater test coverage from a single procedure. These
solutions can also integrate with external test-automation
tools to automatically run tests and import results.

This workflow makes process compliance seamless and
painless. Company processes and best practice informa-
tion are available directly in the project view to ensure
that all team members comply with established pro-
cesses, even without complete knowledge of the pro-
cess details. Polarion’s workflow also integrates require-
ments, tasks, change requests, process management,
project planning, time management, build manage-
ment, source code audits and metrics, and maturity-
model compliance tracking to ensure that application
development is on time, and of high quality.

Advanced application development and coordination
platforms also feature defect and risk management
capabilities. These capabilities can automatically create
issue and risk reports from test failures, and assign tasks
to software engineers to reduce the time to solution
implementation. The embedded application

development platform automatically tracks issues,
recording all subsequent related activities, including
implemented fixes, and additional tests. As additional
tests are performed, it is critical that hardware and
software are co-simulated to improve overall quality
and facilitate software delivery to vehicle programs. A
unified platform for embedded application development
orchestration can ensure that each software build is
tested in all of the relevant hardware configurations
using both emulated and physical hardware. All test
information will be tracked whether the test was manu-
ally or automatically executed, or performed in a third
party tool or within the application development plat-
form environment. This will ensure that a complete
report of all issues, active and resolved, is maintained
throughout development.

With these capabilities, automotive embedded software
engineers will realize several key benefits. They can
prototype, simulate, and execute designs to validate
that they meet requirements, optimize architectures,
and verify and validate correct behavior. The engineers
can also perform hardware-software co-simulations to
evaluate the designs in the context of the system hard-
ware and peripherals. This enables the engineers to
uncover issues or risks, either in the software or the
hardware mapping, that arise in a system context. In
the background, the application development platform
solution will track requirements, models, architectures,
test plans, test results and more to ensure traceability
and provide software engineers with the right informa-
tion at the right time. This will streamline issue resolu-
tion by making it straightforward to supply precise and
complete documentation to the concerned party. This
comprehensive level of traceability also helps to prevent
critical bugs from being released into the field.

Figure 6: Test management, process compliance, and risk management
tools help ensure full test coverage.

White paper | Orchestrating automotive embedded application development: Application development and quality assurance

8Siemens Digital Industries Software

Automotive embedded software application develop-
ment and QA is an intricate and involved process, as it
must constantly consider implementation hardware
(including peripherals like sensors and actuators), and
system considerations and constraints (including vehi-
cle integration and geometrical dependencies). A uni-
fied software engineering platform provides the engi-
neering environment that ensures data consistency
despite constant changes, keeping all the parties in the
development process continuously involved in deliver-
ing quality software applications that are compatible
with the full range of vehicle variability. Such a platform
achieves this data coherency through robust integra-
tions with the various tools used in application develop-
ment, and powerful change management capabilities.

These capabilities are critical to the delivery of increas-
ingly complex software features and functions needed
to compete in the digitalizing automotive market. As

ADAS, infotainment, and a widening array of electrical,
electronic, and software-based features continue to
drive value for the consumer, the average lines of code
in vehicles will climb. Today, it is common for a luxury
vehicle to surpass one-hundred and fifty million lines of
code.

In the future, the development of automated driving,
vehicle connectivity, electric powertrains, and shared
mobility (ACES) will drive this complexity even higher,
and bring software to the top of the automotive value
chain. Self-driving vehicles are predicted to require
billions of lines of code to operate. This level of com-
plexity will make the coordination of embedded applica-
tion development even more critical, as the creation of
innovative and powerful automotive software becomes
the key differentiator for automotive and mobility
companies.

To read more about how Siemens solutions can help
you, please visit siemens.com/aes where you will
find additional content such as blogs, whitepapers,
podcasts, product videos, webinars, solution capa-
bilities and infographics.

Conclusion

http://siemens.com/aes

Siemens Digital Industries Software

Headquarters
Granite Park One
5800 Granite Parkway
Suite 600
Plano, TX 75024
USA
+1 972 987 3000

Americas
Granite Park One
5800 Granite Parkway
Suite 600
Plano, TX 75024
USA
+1 314 264 8499

Europe
Stephenson House
Sir William Siemens Square
Frimley, Camberley
Surrey, GU16 8QD
+44 (0) 1276 413200

Asia-Pacific
Unit 901-902, 9/F
Tower B, Manulife Financial Centre
223-231 Wai Yip Street, Kwun Tong
Kowloon, Hong Kong
+852 2230 3333

siemens.com/software
© 2019 Siemens. A list of relevant Siemens trademarks can be found here. Other trademarks
belong to their respective owners.

81256-C1 12/19 C

About Siemens Digital Industries Software
Siemens Digital Industries Software is driving
transformation to enable a digital enterprise where
engineering, manufacturing and electronics design
meet tomorrow. Our solutions help companies of all
sizes create and leverage digital twins that provide
organizations with new insights, opportunities and
levels of automation to drive innovation. For more
information on Siemens Digital Industries Software
products and services, visit siemens.com/software
or follow us on LinkedIn, Twitter, Facebook and
Instagram. Siemens Digital Industries Software –
Where today meets tomorrow.

https://www.sw.siemens.com/
https://www.plm.automation.siemens.com/global/en/legal/trademarks.html
https://www.sw.siemens.com/
https://www.linkedin.com/company/siemenssoftware/
https://twitter.com/siemenssoftware
https://www.facebook.com/SiemensDISoftware
https://www.instagram.com/siemenssoftware/

