
Executive summary

The automotive industry is undergoing rapid change, driven by an ever-
increasing demand for advanced features that rely on sophisticated elec-
tronics and embedded software, such as advanced driver assistance sys-
tems (ADAS) and connected car features. Embedded application
development is a maze-like endeavour where many different tools and
teams must try to collaborate under constantly shifting constraints. A
unified software application engineering platform can ensure that con-
straints and requirements are communicated completely and effectively,
and that development work satisfies requirements accurately.

Piyush Karkare

Siemens Digital Industries Software

siemens.com/aes

Orchestrating
automotive embedded
application development
Application definition and planning

White paper | Orchestrating automotive embedded application development: application definition and planning

2Siemens Digital Industries Software

The automotive industry is a highly dynamic and fast-
changing environment. An ever-increasing demand for
advanced features that rely on sophisticated electronics
and embedded software, such as advanced driver assis-
tance systems (ADAS) and connected car features, are
driving forces behind this change. Such is the demand
that the core automotive competencies are shifting
from mechanical systems to software and electronics.
Differentiation and innovation in the highly competitive
automotive market increasingly relies on software and
electronics, rather than mechanical systems.

OEMs and suppliers are responding to the digital trans-
formation of modern vehicles by standardizing software
features across their vehicle lineup. Volkswagen
recently announced plans for a new software group,
eventually consisting of five-thousand software experts
that will develop a uniform operating system across
their brands (Automotive News Europe, 2019).

Amid this evolution, new players from the technology
sector, such as Waymo and Apple, are entering the
automotive and mobility market. These companies are
well versed in designing and building powerful software
features, applications, and user experiences. At the
same time, automotive and mobility startups are
launching in the hundreds and looking to merge tech
and automotive experience from the start to create
compelling vehicle platforms. In both cases, the grow-
ing importance of vehicle software and electronics has
leveled the playing field with legacy automotive brands.

In addition to these new challenges, competition
between established automotive brands is more intense
than ever. In 2001, the Ford Escape had around six
direct rivals in the small crossover SUV market. Today,
there are more than twenty-one competitors in this
segment form mainstream and high-end luxury manu-
facturers alike. Competition drives the need for greater
vehicle content (in the form of new features), and
greater content drives complexity.

This complexity manifests overwhelmingly in the elec-
trical and electronics (E/E), and software domains. This
can be seen in the number of requirements and specifi-
cations in these domains, which is significantly higher
than others (figure 1). For example, a well-equipped

mid-range vehicle will have about 50,000 mechanical
and regulatory requirements. The E/E and software
domains on that same vehicle will contribute upwards
of 450,000 requirements. The E/E and software verifica-
tion and test plans multiply the number of items that
need to be tracked several times over.

While E/E and software intra-domain complexity is
significant, cascading and enforcing requirements
across domains is potentially even more complicated.
The E/E, software, and mechanical domains are highly
inter-dependent with many points of interaction.
Requirements often have cross-domain relationships
that can be extremely difficult to understand, let alone
predict. However, it is important that teams understand
each design requirement and how it affects the larger
system.

While OEMs and suppliers attempt to build processes
and value-chains, design changes and product evolution
are constant. What matters is the ability to maintain
consistency and quality among related data across the
domains. To do this, the key is ensuring overall consis-
tency and compatibility between the work that various
stakeholders are performing across many platforms and
organizations. The OEM and its suppliers must be able

Introduction

Figure 1: The requirements and specifications for the software and E/E
domains are significantly more complex and numerous than other do-
mains.

White paper | Orchestrating automotive embedded application development: application definition and planning

3Siemens Digital Industries Software

to coordinate their activities through each level of
design abstraction, from the vehicle platform-level
features, to the logical allocation and actual software
application development.

OEMs are moving towards service-oriented architec-
tures. This transition is characterized by consolidating
ECU hardware into a smaller number of domain control
units, leaving services and functionality to be accom-
plished through software ported on ECU abstractions.
Such architectures make it extremely prudent to track
where each service is running to enable proper applica-
tion-level decompositions. A feature-function architec-
ture with decompositions into services and mappings
into ECU abstractions is an effective, organic, and scal-
able approach for tracking changes and their effects.

Coordinating activities between any of these teams or
abstractions can be a significant challenge, but organiz-
ing embedded application development is particularly
difficult. Automotive embedded application

development is a maze-like endeavour where many
different tools and teams must try to collaborate under
constantly shifting constraints. This environment makes
collaboration a challenge, leading to problems. Today,
software systems are a major source of program risk
due to the complexity and criticality of software applica-
tions. Software defects and frequent changes in con-
straints cause production delays, budget overruns, and
increased warrantee costs.

For the purposes of this paper, automotive embedded
software application development can be divided into
three segments:

• Embedded application definition and planning

• Embedded application development and quality
assurance

• Embedded application delivery and monitoring

In this paper, we will focus on the first segment–
embedded application definition and planning.

White paper | Orchestrating automotive embedded application development: application definition and planning

4Siemens Digital Industries Software

Some OEMs have successfully established a feature-
centric, architecture driven approach for in-vehicle
software. With such an approach, application definition
and planning initiate when the vehicle-level feature
requirements, specifications, and constraints are fully
defined and cascaded to the software application
abstraction. These requirements, specifications, and
constraints define the vehicle platform or vehicle-level
feature design intent (figure 2). For example, the vehi-
cle engineers define specifications and constraints for
the vehicle features or functions that enable ADAS
features: lane-keep assist, adaptive cruise control, for-
ward collision warning and mitigation, and more.

Downstream, the software engineers start to decom-
pose the feature level definition down to the applica-
tion-level needs and definitions. These drive the next
stage of decomposition, down to specific software
functions. In reality, the decomposition of software
functions and their standardization across vehicle plat-
forms is a continuous process throughout development
(figure 3). Software engineers are constantly

Application definition and planning

Figure 2: Software features are decomposed into software functions,
allocated to logical components, and mapped to physical components with
part-numbers.

SWF – Customer/engineering feature
SWf – Decomposed software function
HWf – Decomposed hardware function

LC – Logical component
PC – Physical component

Figure 3: Functional decomposition from requirements and constraints is a continuous process throughout development.

White paper | Orchestrating automotive embedded application development: application definition and planning

5Siemens Digital Industries Software

decomposing functions from higher-level requirements
to realize a vehicle’s feature set. As the engineers
develop these functions, they will maximize functional
uniformity and optimize functional interactions to
ensure the functions can be scaled across vehicle plat-
forms. Where possible, the approach allows engineers
to reuse functions from other systems or organizations.

At this stage, it is also critical to consider safety con-
cepts for the application and develop strategies to
manage risk. Robust safety requirements and verifica-
tion and validation strategies are defined at the system
level, and decomposed all the way down to the embed-
ded software application development level. Software
engineers develop failure modes, effects, and diagnos-
tics analysis (FMEA/FMEDA), hazard analysis and risk
assessment (HARA), and other safety requirements and
analyses. The engineers document and track these
many processes to meet ISO 26262 guidelines.

Key challenges
The complexity involved in embedded application devel-
opment makes managing the process manually an
extremely difficult and time-consuming ordeal (figure
4). Meanwhile, automotive embedded software engi-
neers are under pressure to deliver high quality soft-
ware that supports the full range of vehicle variants, all
on tight timelines. As engineers work to meet this
expectation, system-level changes regarding interfaces,
functional behaviors, hardware consolidations, hard-
ware limitations, and network bandwidth issues can
quickly derail fast-paced software development activi-
ties. Tracking such system-level changes is a daunting
challenge that can result in making or missing a
deadline. Worse, failure to track these changes can
cause costly re-work depending on when the changes
are prescribed, further delaying development and
potentially adding execution risks.

The implementation of system-level changes and
updates is a multi-domain and multi-organizational
activity. A new specification from the chassis group,
potentially caused by an issue with the electrical wiring
harness or curb-weight considerations, might impose
new requirements on powertrain functions that, in turn,
can affect an application under the body-controls
group. Tracking and understanding the origination of
changes and their implications throughout domains and
organizations becomes nearly unmanageable as teams
progress through the development lifecycle. As a result,
changes may be made to software applications with or
without a complete understanding of the change.

ECUs, sensors, and other hardware needed to imple-
ment vehicle features may be consolidated, or modified
to support different implementations. As variants are
developed or as hardware is consolidated, the embed-
ded software application needs to optimize its operation
across these hardware variants. To do so, engineers
have to capture specifications and requirements from
each hardware or operating system to configure the
application for optimal functionality across the range of
supported hardware variants and operating systems.

The clarity and quality of design requirements, at all
levels, often deteriorates as employees retire or move
to other companies, and are thus unavailable to clarify
missing or ambiguous information. Losing such internal
knowledge can result in significant barriers during
development. The integrity of software and other mod-
els can also suffer as various stakeholders may be work-
ing from incorrect or out-of-date models. In fact, some
groups may be working independently of the models
altogether, distorting the source of truth for a given
component in the vehicle. These seemingly small incon-
sistencies create significant delays and costly rework
downstream.

Figure 4: Growing software complexity makes managing application development extremely difficult.

White paper | Orchestrating automotive embedded application development: application definition and planning

6Siemens Digital Industries Software

Embedded application definition and planning projects
need to inhale and track the system-level features or
product information, with links between the application
and system-level. These links enable active and organic
alignment with system-level changes, and ensure the
project remains in context of the overall system during
development. The definition or change of software
requirements triggers software architecture and model
changes to align with the new requirements, as well as
updates to align with control algorithms. These model-
ing activities can now be verified and validated at the
application and system level for the desired outcome
before any code level changes are triggered.

Product integration
A clear line-of-sight from the implementation all the
way up to the system-level context is a necessity in
complex automotive embedded software domain (fig-
ure 5). Software engineers should know how their
elements of the application definition tie back to the
system-level features definitions and hardware
constraints.

Maintaining a system-level feature context is important
because it ensures that all project deliverables are con-
sistent with the system-level requirements, constraints,
and dependencies. This is true especially as changes are
made at the system level. Perhaps a new requirement is
defined that combines automatic emergency braking
and adaptive cruise control features, targeting imple-
mentation on the adaptive cruise control or chassis
hardware module. By maintaining a system-level con-
text, software engineers will understand how this
change affects the application they are developing, and
any changes they need to make. It is imperative that
engineers can see these relationships as they work to
deliver high quality software that supports multiple
vehicle variants at a rapid pace.

A unified, integrated, and extensible platform for
embedded application development is critical to help
manage the numerous and intricate relationships
between software development activities and the sys-
tem-level definition, across domains and organizations.
Such a platform can coordinate requirements to work
items, and help manage the cascading and implementa-
tion of changes throughout the software architecture.

Embedded application definition and
planning with a unified platform

Figure 5: A clear line of sight to the vehicle-level feature definition and hardware constraints is needed throughout the embedded application
development process.

White paper | Orchestrating automotive embedded application development: application definition and planning

7Siemens Digital Industries Software

Advanced software development coordination tools,
such as Polarion, can consume and track the system-
level feature definition to create a direct link between
system level changes and application development,
ensuring the application and the overall system devel-
opment stay in sync (figure 6). For example, the system
definition may call for an application for the power
steering control module (PSCM) to manage all the steer-
ing control features and functions, such as pull-drift
compensation or lane-keep assist, among others. The
coordination tool can import the relevant requirements,
specifications, vehicle-level models, configuration and
calibration parameter definitions, and more from the
system-level.

This is can be referred to as the product integration
stage, as it integrates the overall product and software
development cycles. Product integration allows active
collaboration between the software definition and
planning, and the overall product direction and system
definitions. Such collaboration ensures that embedded
software applications are consistent with hardware
constraints and the high-level system needs. This also
helps OEMs and suppliers align their respective guide-
lines and goals.

Requirements, tests, and targets
The system level definitions and hardware constraints
are codified into system level requirements. With these
requirements, software engineers can decompose the
embedded application level requirements, noise factors,
failure modes and effects analyses (FMEAs), test cases,
and functional goals. These requirements are specific to
each embedded software application, but remain con-
sistent with the system-level context.

To aid with regulatory and process compliance, soft-
ware engineers can manage application risk using
ISO26262 guidelines and Automotive-SPICE. The engi-
neers can also use the Polarion platform to manage
safety goals, functional safety concepts, and related
safety requirements with full traceability all the way
upstream to system context and downstream to lines of
code and models. This enables the engineering teams
to reduce the number of deviations, non-conformance
and recalls.

With a unified embedded application development
platform, users can seamlessly collaborate with all key
stakeholders, and their deliverables, regardless of the
tool used to develop each deliverable (figure 7). With
such collaboration, the development of application
deliverables, such as models or test plans, will remain
consistent despite the continuous changes in software
requirements or hardware implementations. The col-
laboration provided by the application development
platform can also capture specifications to help teams
to optimize each application for several ECU hardware
variants and operating systems.

Figure 6: Advanced application engineering management solutions can
consume system requirements to create a direct link between the system
and application levels.

Figure 7: A unified application development platform enables collabora-
tion and consistency among teams developing application models, test
plans, and more.

White paper | Orchestrating automotive embedded application development: application definition and planning

8Siemens Digital Industries Software

Architecture and modeling
While software architects work on the architecture and
modeling stage, they relate to the application-specific
requirements, specifications, and behaviors, to optimize
the software architecture by creating software models
and capturing interactions between software compo-
nents (figure 8).

A model-based software development approach best
supports software engineers as they work under these
pressures. By starting with robust models, engineers
can develop a rich architecture that includes potential
behavior of the final software. A model-based approach
also enables editing, refactoring, enriching, and analysis
of the architecture at the pace required to manage
these pressures.

Architecture analysis, test, and verification can be
moved earlier in the development cycle. As tests are
run, findings can be incorporated back into the software
models. Interoperability with other simulation solutions,
such as a mechatronics simulation, through functional
mock-up interfaces (FMIs) or with Simulink creating
closed-loop from testing and verification back to the
software models.

Polarion orchestrates the creation and modification of
these deliverables by connecting directly with industry
standard tools such as Embedded Software Designer
(ESD), MATLAB/Simulink, Enterprise Architect, and
others. As the models and component interactions are
developed and become mature, Polarion can link them
back to the application definition. This ensures that all
the necessary requirements, specifications, and behav-
iors have a model representation with robust architec-
ture that connects all the necessary software compo-
nent interactions. This step validates the software
model before any code is implemented.

The architecture and modeling stage facilitates the
design and validation of vehicle software applications
with a common environment for system and software
engineers with multi-directional requirements traceabil-
ity. The result is a digital twin of the software architec-
ture and individual applications that will inform and
reflect downstream design decisions. This stage also
serves to ensure consistency and collaboration across
the functional architecture, application behavior mod-
els, and requirements. Various teams can make archi-
tectural trade-offs and leverage software models to
identify issues, observe variabilities in behavior, and
examine semantics.

By unifying the application definition and planning
stage on a single platform, software teams can assign
tasks for modeling, coding, test-execution, build pro-
duction, and more across the needed toolsets. At any
given time, software engineers can peek into the sys-
tem level definitions and constraints and collaborate
with other system users.

Furthermore, the creation of, and any subsequent
changes to, detailed software requirements will trigger
software architecture and modeling changes. With the
refined requirements, software engineers can update
these models to align with control algorithms. The
software engineers can also execute model-in-the-loop
(MiL) tests to verify and validate that desired outcomes
are achieved at the application and system level before
any code level changes are triggered.

Figure 8: A unified application engineering platform helps engineers to
coordinate architecture and modeling tasks, make trade-off analyses, and
leverage model-based software development.

White paper | Orchestrating automotive embedded application development: application definition and planning

9Siemens Digital Industries Software

The software content of modern vehicles is growing at
an alarming rate to accommodate the demands of a
changing automotive industry. Consumers expect ever-
greater functionality from their vehicles through
advanced safety features, vehicle connectivity, and
customizable experiences. Other more fundamental
vehicle systems have been under the domain of soft-
ware for a few years: power steering, engine manage-
ment, and braking systems to name a few. These indi-
vidual functions may be well understood, but the
increasing interactions between these and other vehicle
systems are introducing new challenges.

Increasing complexity from greater software content,
sophistication, and cyber-physical interdependence
requires new levels of orchestration for the product and
application lifecycle. Such coordination demands a pow-
erful solution, employing a unified product-software
digital thread, to trace from the highest-level system
definitions down to individual implementations (figure 9).

With such a solution, software engineering teams can
perform application development tasks with explicit
knowledge of the system context for each deliverable.
Teams can collaborate to make architecture trade-offs
and manage change with increased agility. Such a
solution also enables a closed-loop from verification

and validation back into application definition, plan-
ning, and development to continuously optimize and
improve quality.

The application definition and planning phase, how-
ever, is just the first step in developing the sophisti-
cated software applications needed to enable the
increasingly computerized vehicles of today. Once
planning and definitions are complete, software engi-
neers must implement the models into actual code and
test to ensure high quality. The applications also must
be configured to match the hardware and operating
system variants in the vehicles in which they will be
deployed. These following sub-processes stand to ben-
efit equally from a unified embedded application devel-
opment platform.

Ultimately, companies that are able to effectively man-
age the development of software applications across
organizations, engineering domains, and functional
abstractions will be in the best position to thrive in the
digitalized automotive industry. This will be especially
true as software functionality becomes less dependent
on ECU hardware due to an increased use of vehicle
operating systems and firmware. A robust methodology
to track each application, its functional contents, sys-
tem constraints, and potential hardware constraints will

be key to success. A uni-
fied platform for automo-
tive embedded application
development is the foun-
dation on which this capa-
bility will be built.

To read more about how
Siemens solutions can
help you, please visit
siemens.com/aes where
you will find additional
content such as blogs,
whitepapers, podcasts,
product videos, webi-
nars, solution capabili-
ties and infographics.

Conclusion

Figure 9: A unified platform for embedded application engineering orchestration provides traceability and
facilitates collaboration through all processes of application development.

http://siemens.com/aes

Siemens Digital Industries Software

Headquarters
Granite Park One
5800 Granite Parkway
Suite 600
Plano, TX 75024
USA
+1 972 987 3000

Americas
Granite Park One
5800 Granite Parkway
Suite 600
Plano, TX 75024
USA
+1 314 264 8499

Europe
Stephenson House
Sir William Siemens Square
Frimley, Camberley
Surrey, GU16 8QD
+44 (0) 1276 413200

Asia-Pacific
Unit 901-902, 9/F
Tower B, Manulife Financial Centre
223-231 Wai Yip Street, Kwun Tong
Kowloon, Hong Kong
+852 2230 3333

siemens.com/software
© 2019 Siemens. A list of relevant Siemens trademarks can be found here. Other trademarks
belong to their respective owners.

81120-C4 12/19 C

About Siemens Digital Industries Software
Siemens Digital Industries Software is driving
transformation to enable a digital enterprise where
engineering, manufacturing and electronics design
meet tomorrow. Our solutions help companies of all
sizes create and leverage digital twins that provide
organizations with new insights, opportunities and
levels of automation to drive innovation. For more
information on Siemens Digital Industries Software
products and services, visit siemens.com/software
or follow us on LinkedIn, Twitter, Facebook and
Instagram. Siemens Digital Industries Software –
Where today meets tomorrow.

10

https://www.sw.siemens.com/
https://www.plm.automation.siemens.com/global/en/legal/trademarks.html
https://www.sw.siemens.com/
https://www.linkedin.com/company/siemenssoftware/
https://twitter.com/siemenssoftware
https://www.facebook.com/SiemensDISoftware
https://www.instagram.com/siemenssoftware/

