

Predict and reduce gear whine noise 5 times faster

Generate transmission gearbox models automatically and boost vibro-acoustic performance

Unrestricted © Siemens AG 2019

Realize innovation.

Transmission Engineering Challenges

Transmission Engineering Process

More efficient process in Simcenter 3D

End-to-end integrated process for transmission simulation from CAD to Loads to Noise Transmission Builder → Motion → Motion-to-Acoustics → Acoustic Analysis Automatic creation of multi-body simulation models

- Accurate 3D simulation of gear forces
- Semi-automatic link of gear forces to vibro-acoustics
- · Efficient and accurate acoustic simulations

Multi-Body Simulation of Transmissions

Transmission Engineering Process

More efficient process in Simcenter 3D

- End-to-end integrated process for transmission simulation from CAD to Loads to Noise Transmission Builder → Motion → Motion-to-Acoustics → Acoustic Analysis
- <u>Automatic</u> creation of multi-body simulation models
- Accurate 3D simulation of gear forces
- · Semi-automatic link of gear forces to vibro-acoustics
- · Efficient and accurate acoustic simulations

Multi-Body Simulation of Transmissions

Transmission Builder

New Simulation Solution for Gears

Summary

Unrestricted © Siemens AG 2019 Page 6 2019-05-08

Multi-Body Simulation Scope

Predicting, **Analyzing**, **Improving** the positions, velocities, accelerations and loads of a mechatronic system using an accurate and robust 3D multi-body simulation approach

Simcenter 3D Motion for Transmission Simulation Critical features

Mechatronic Systems Flexible Bodies Integration with tools for robust design of Predict mechanical system more accurately wrt • complex non-linear multi-physics systems: displacements and loads control systems, sensors, electric motors, etc Gain insight in frequency response of a mechanism Enable Noise, Vibration & Harshness (NVH) as well as Durability analyses MATLAB SIMULINK Simcenter Amesim

Multi-Body Simulation Industry Modelling Practices

Page 9 2019-05-08

Multi-Body Simulation of Transmissions

Transmission Builder

New Simulation Solution for Gears

Summary

Unrestricted © Siemens AG 2019 Page 10 2019-05-08

New Approach Transmission Builder Vertical Application

Problem: Even experienced 3D-Multi Body Simulation experts can struggle to

- 1. Model complex parametric transmissions
- 2. Capture all relevant effects correctly and efficiently
- 3. Update and validate their models

Solution: Transmission Builder \rightarrow Up to 5x faster Model creation process

Gear train specification based on Industry standards

Simcenter Transmission Builder

Multibody simulation model

Unrestricted © Siemens AG 2019 Page 11 2019-05-08

Demonstration Model Creation and Updating

- 1. Loading of pre-defined Transmission
- 2. Geometry creation
- 3. Creation of rigid bodies for gearwheels and shafts
- 4. Positioning and Jointdefinition
- 5. Force element creation

Multi-Body Simulation of Transmissions

Transmission Builder

New Simulation Solution for Gears

Summary

Unrestricted © Siemens AG 2019 Page 13 2019-05-08

New Solver Methodologies Simulating and Validating

Validation cases ensure results as <u>accurate</u> as non-linear Finite Elements simulation

Unrestricted © Siemens AG 2019

Dedicating Tooth Contact

- + Efficient
- Only for gears, not for arbitrary shapes
- No deformation included

But, included as part of the Load Calculation

FE based contact detection

- "Brute force" \rightarrow Slow
- + Any geometry
- + Deformation effects included

Unrestricted © Siemens AG 2019

Gear Contact Methodology Highlights

Key Features

- Includes Microgeometry Modifications and Misalignments in all DOF
- Automatically takes in to account coupling between slices and between teeth
- Accounts for actual gear body geometry with advanced stiffness formulation
- Evaluates tip contact (approximation)

Multi-Body Simulation of Transmissions

Transmission Builder

New Simulation Solution for Gears

Summary

Unrestricted © Siemens AG 2019 Page 17 2019-05-08

Multi-Body Simulation of Transmissions Summary

Unrestricted © Siemens AG 2019 Page 18 2019-05-08

Simulate Transmission

- Add flexible modes (Autoflex)
- Set up load cases

Acoustic Simulation of Transmissions

Transmission Engineering Process

More efficient process in Simcenter 3D

End-to-end integrated process for transmission simulation from CAD to Loads to Noise Transmission Builder → Motion → Motion-to-Acoustics → Acoustic Analysis Automatic creation of multi-body simulation models

- Accurate 3D simulation of gear forces
- Semi-automatic link of gear forces to vibro-acoustics
- Efficient and accurate acoustic simulations

Acoustic Simulation of Transmissions

Acoustic Simulation

Post-Processing

Summary

Unrestricted © Siemens AG 2019 Page 22 2019-05-08

Acoustic Process Overview

Acoustic	Process	Overview

From Motion to Acoustics

Benefits

- Quick switch between Motion and Acoustics solutions
- Efficient data processing (fast pre-solver)
- Automatic data mapping
- Pre-processing time reduction

- **Input Loads Time Data to Waterfall Post-Processing** FFT of Time Data Multi-body simulation Multiple RPM Time range selection Waterfalls • **RPM** function results Time segmentation **Functions** • Frame size definition Fourier transform Data selection *(forces,* Order-cut analysis • • (windowing, frequency vibrations)
- Automatic mapping

Input File 1			
Select File			
motion_results.mres			
Options			
Data			
Refresh			
Selected	Quantity	Location	
×	Displacement	MotionEler	ment
×	Velocity	MotionEler	ment
×	Acceleration	MotionEler	ment
 Image: A second s	Force	MotionEler	ment
•	III		

2019-05-08

Page 24

Time signal Processi	ng 1	
Input Range Selec	tion	
Time Segmentatio	n	
👿 Enable Time Segr	mentation	
Block Size		51:
Overlap (%)		20.0
Fourier Transform		
Enable		
Window Type	Hanning	
Correction Mode	Amplitude	
Fourier Transform	Output Post	processi
Lower Limit	0	Hz •
Upper Limit	500	Hz 🔹
Average Spectra a	fter Segmenta	ition

	to Waterfall of Time 1		
RPM	Step Definition		
Start	0	rev/min •	•
End	1500	rev/min •	•
Step	25	rev/min •	Ŧ
Fram	e Size Definition		
Туре		Time	•
Time	0.125	5	•
Filter		*	
Filter Elen	nent Name	* Variable Name	
Elen Gear	nent Name 4-Gear3_GearContact	* Variable Name omega2	*
Filter Elen Gear Se00	nent Name 4-Gear3_GearContact 1 2	* Variable Name omega2 value value	*
Filter Elen Gear Se00 Se00 Bear	nent Name 4-Gear3_GearContact 1 2 ng1_Shaft1-Casing	* Variable Name omega2 value value angled_torsional	*
Filter Elen Gear Se00 Se00 Beari Beari	nent Name 4-Gear3_GearContact 1 2 ng1_Shaft1-Casing ng2_Shaft1-Casing	* Variable Name omega2 value value angled_torsional angled_torsional	•
Filter Elen Gear Se00 Se00 Bear Bear	hent Name 4-Gear3_GearContact 1 ng1_Shaft1-Casing ng2_Shaft1-Casing ng3_Shaft2-Casing	* Variable Name omega2 value angled_torsional angled_torsional angled_torsional	•
Filter Elen Gear Se00 Se00 Beari Beari Beari Beari	nent Name 4-Gear3_GearContact 1 2 ng1_Shaft1-Casing ng2_Shaft1-Casing ng3_Shaft2-Casing ng4_Shaft2-Casing	* Variable Name omega2 value angled_torsional angled_torsional angled_torsional angled_torsional	•
Filter Elen Gear Se00 Beari Beari Beari Beari Beari	nent Name 4-Gear3_GearContact 1 2 1 1 2 2 3 2 3 3 5 1 4 1 2 3 5 1 4 1 2 - Casing 1 9 4_Shaft2-Casing 1 1 9 4_Shaft2-Casing 1 1 9 5 5 1 3 1 2 - Casing 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	* Variable Name omega2 value value angled_torsional angled_torsional angled_torsional angled_torsional angled_torsional angled_torsional angled_torsional angled_torsional angled_torsional	•

range, averaging)

Acoustic Proc Acoustic Simula	ess Overview ation	efits Efficient model set-up Efficient, accurate solutions Quick solution update Deep insight into results		SIEMENS Ingenuity for life
Geometry Preparation	Meshing and Assembly	Structural/Acoustic Pre-Processing	Solver	Post-Processing
Holes closingBlends removalParts assembly	 Mesh mating Bolt pre-stress Structural meshing Acoustic meshing 	 Loading from multi-body analysis Fluid-Structure Interface Output requests 	• Simcenter Nastran Vibro-Acoustics (FEM AML, FEMAO, ATV)	 Structural results Acoustic results Contribution analysis (modes, panels, grids)
<image/>				
• • • • • • • • • • • • • • • • • • •				

What-If, Optimization, Feedback to Designer

Acoustic Simulation of Transmissions

Acoustic Simulation

Post-Processing

Summary

Unrestricted © Siemens AG 2019 Page 26 2019-05-08

Acoustic Simulation Model Preparation – Meshes

From multi-body analysis

- CAD geometry
- Structural mesh of body

→ Used to compute structural modes included in Motion model when accounting for flexibility of body

Specific to acoustic analysis

- Acoustic mesh around body for exterior noise radiation
 - → Geometry cleaning (ribs removal, holes filling)
 - → Surface and convex meshing
 - \rightarrow 3D elements filling
- Microphone mesh for acoustic response

Assembly of structural and acoustic meshes

Benefits

- Easy, fast, efficient model set-up
- Quick switch between CAD and FEM environments
- Quick update with associativity of meshes to CAD
- Flexible modelling through assembly

Ingenuity for life 145 115 110 Time(s) **Time data** То Waterfall of **Frequency data** 600 **Benefits** RPM(rpm / 1200 1600 20002500 requency(Hz) Easy, fast, efficient model set-up Quick switch between FEM and SIM environments Quick solution update with associativity of loads and

Acoustic Simulation Model Preparation – Loads and Boundary Conditions

Structural constraints and loads

- Fixed constraints
- Multi-body forces applied at center of bearings
 - \rightarrow Automatic mapping
 - \rightarrow Data processing (time to waterfall of time data, FFT)

Acoustic boundary conditions

AML (Automatically Matched Layer) \rightarrow Non-reflecting boundary condition to absorb outgoing acoustic waves

Fluid-structure interface

Weak or strong coupling

Unrestricted © Siemens AG 2019 2019-05-08 Page 28

boundary conditions to CAD

Acoustic Simulation Solver Technologies – FEM AML

- Automatic creation of PML (Perfectly Matched Layer) at solver level
 - \rightarrow Full absorption of outwards-traveling waves
 - First, accurate results in "physical" (red) FEM domain
 - Then, accurate results outside the FEM domain (green), through post-processing
- PML layer very close to radiator

$$\forall x \in \Omega_{PML} \colon x \to \hat{x} = x + \frac{f(x)\vec{n}(x)}{jk}$$

$$p(x) = \int_{\Gamma_{in}} G(x, y) \frac{\partial p(y)}{\partial n} + p(y) \frac{\partial G(x, y)}{\partial n} d\Gamma_{i}$$

Figure 7: PML elements layer around a bounded spherical FEM model

Benefits

- No manual creation of extra absorbing layer
- Optimal absorption
- Lean FEM model
- Fast computation

S

Ti

	ρς	AML
ize	~ 190k nodes	~ 14k nodes
me	x s/freq.	x/20 s/freq.

Page 29 2019-05-08

Acoustic Simulation Solver Technologies – ATV

• **Single** computation of acoustic transfer vector between vibrating surface and microphones

 $\{p(\omega)\} = [ATV(\omega)] \times \{v_n(\omega)\}$

- Independence of ATV from load conditions (RPM, order)
- For exterior radiation, smooth ATV functions in frequency

<u>Benefits</u>

- Large frequency steps for ATV computation, and interpolation for acoustic response
- Fast multi-RPM analysis

SIEMENS

Ingenuity for life

Acoustic Simulation Solver Technologies – FEMAO

FEMAO (FEM Adaptive Order)

- High-order FEM with adaptive order refinement
- Hierarchical high-order shape functions
- Auto-adapting fluid element order at each frequency (dependent on *f*, local *c*₀, local *h*), to maintain accuracy

Benefits

- Lean <u>single</u> coarse acoustic mesh
- Optimal model size at each frequency
- Huge gains vs standard FEM
 - Faster at lower frequencies
 - More efficient at higher frequencies
 - 2 to 10 x faster

Unrestricted © Siemens AG 2019 Page 31 2019-05-08

Acoustic Simulation of Transmissions

Acoustic Simulation

Post-Processing

Summary

Unrestricted © Siemens AG 2019 Page 32 2019-05-08

Bearing Forces Frequency Domain

Benefits

- Deeper insight on input forces
- Quick solution update for comparative studies involving design/modelling changes

Rigid body vs Flexible body

- No significant difference at low frequencies
- Above 1400 Hz, more frequency content due to structural modes of flexible housing structure

Plain gears vs Lightweight gears (flexible body)

- Low harmonic at 200 Hz (6000 RPM), due to gear stiffness variation with holes in lightweight gear
- Side band due to tooth stiffness variation (amplitude effect due to coupling with holes)

Radiated Acoustic Power Functions

Benefits

- Efficient post-processing for results analysis
- Quick solution update for comparative studies involving design/modelling changes

Rigid body vs Flexible body

Plain gears vs Lightweight gears (flexible body)

- Low frequencies
 - Reduced impact of flexibility
- High frequencies
 - Larger impact of flexibility

Unrestricted © Siemens AG 2019

- Low RPM
 - Significant impact of lightweight gears
- High RPM
 - Extra frequency content at low frequencies

Order-Cut Analysis Rigid Body vs Flexible Body

Benefits

- Efficient postprocessing for results analysis
- Global overview on correspondence between source (dynamic forces) and receiver (acoustic power)

SIEMENS

Ingenuity for life

Order-Cut Analysis Plain Gears vs Lightweight Gears

SIEMENS Ingenuity for life

Benefits

- Efficient postprocessing for results analysis
- Global overview on correspondence between source (dynamic forces) and receiver (acoustic power)

Contribution Analysis Examples

Multiple results types: structural displacements and modes, equivalent radiated power, acoustic pressure and power, panel contributions to pressure and power, grid contributions, etc.

Benefits

Efficient post-• processing for results analysis

Deep • understanding of model behavior through multiple results types

Structural displacements

Acoustic pressure

5900, DATA SOURCE 1 - 1, 1191.41Hz

Pressure - Nodal, Scalar

76.33

74.49

72.66

70.82

68.99

67.15

65.32

63.48

61.65

59.82

57.98

56.15

54.31

[dB]

Absolute Modal, 5900, DATA SOURCE 1 - 1, 765897, , 1191.41Hz Pressure - Nodal, Scalar

Grid contributions

Unrestricted © Siemens AG 2019 Page 37 2019-05-08

Acoustic Simulation of Transmissions

Acoustic Simulation

Post-Processing

Summary

Unrestricted © Siemens AG 2019 Page 38 2019-05-08

Acoustic Simulation of Transmissions Summary

Simcenter 3D Acoustics Simulate Transmission

Transfer bearing forces into frequency domain

• Map bearing forces onto vibro-acoustic model

• Set-up vibro-acoustic model

Unrestricted © Siemens AG 2019

Conclusion

Predict and Reduce Gear Whine Noise 5 Times Faster

Generate transmission gearbox models automatically and boost vibro-acoustic performance

Automation removes 80% of workload for transmission model generation

New gear solver increases efficiency and accuracy Automatic motion-to-acoustics link simplifies pre-processing

Fast acoustic solver gives superior insight to response

Hyundai Motor Company

Gear Whine Analysis of Drivetrains Using Simcenter Simulation & Services

- Predictive simulation for system level NVH and gear whine
- Bring 3D simulation to the next level of usability, towards an holistic generative approach for drivetrain design and NVH

Easy workflow from design specifications NVH gear whine analysis

- Simcenter 3D Motion and Transmission Builder for system level NVH in multibody
- Simcenter Engineering and Consulting for solving complex engineering issues

"Simcenter Engineering and Consulting services helped us use the right analysis tools to cover the entire gear transmission analysis [...] The Simcenter 3D Transmission Builder software tool is well suited for our engineering purposes" Mr. Horim Yang, Senior Research Engineer

https://youtu.be/bBM5TPP6iBg