
Executive summary
Current approaches used to tackle the complexities in cockpit domain units
are both cost prohibitive and lacking in performance. Utilizing virtualization in
automotive software architecture provides a better approach when taking on
these complexities. This can be achieved by encapsulating different heteroge-
neous automotive platforms inside virtual machines running on the same
hardware. This approach not only provides a more efficient way of communi-
cation and reduces the cost of adding a dedicated micro-controller to each
platform. It also reduces the development cost by reusing legacy platforms as
encapsulated virtual machines without the need for new adaptation efforts.

Mohamed Mounir
Software Engineer
Siemens Digital Industries Software

Siemens Digital Industries Software

siemens.com/autosar

Using hypervisor for
infotainment and AUTOSAR
consolidation on a single ECU

http://siemens.com/autosar

White paper | Using hypervisor for infotainment and Autosar consolidation on a single ECU

2Siemens Digital Industries Software

Contents

Introduction ... 3

Current approaches ... 4

System architecture and methodology 5

Siemens Embedded Hypervisor................................ 7

Virtualization for automotive software 8

System implementation ... 9

AUTOSAR demonstration 10

AUTOSAR application runtime results 11

Conclusion ... 11

White paper | Using hypervisor for infotainment and Autosar consolidation on a single ECU

3Siemens Digital Industries Software

Introduction

Today’s automotive manufacturers are racing to deploy
new and innovative functionalities in the modern vehi-
cle with technologies that include the human-machine
interface (HMI), cloud-based services, vehicle ad-hoc
networks (VANET) and autonomous driving. These new
technologies increase the complexity of vehicle’s electri-
cal and electronics (E/E) architecture and add new
requirements for connected software systems. The
number of Electronic Control Units (ECUs) is constantly
increasing with over 100 ECUs in a modern vehicle. This
forces automotive OEMs to consolidate multiple units
into a single, high-computing platform.

While this approach simplifies the networking model of
the vehicle, it adds more challenges to the automotive
software systems architecture. These same challenges
exist in the cockpit domain, appearing in Advanced
Driver Assistance Systems (ADAS), infotainment head
units, and Telematics (figure 1). To further complicate
matters, these software applications now require
greater variations in their system requirements in terms

of safety, security and connectivity. In-vehicle commu-
nications and safety critical requirements often require
real-time operating systems (RTOSes), while infotain-
ment applications, which are non-safety relevant, run
on Linux general purpose operating systems. The com-
bination of the two OSes enables the heterogeneous
nature of these applications.

Figure 1. Cockpit domain controller network.

Head
unit

White paper | Using hypervisor for infotainment and Autosar consolidation on a single ECU

4Siemens Digital Industries Software

Current approaches

A current approach that might be used to tackle this
problem is to add two microcontrollers (MCUs) on the
same electronic control unit. One MCU runs the Linux®-
based application responsible for high-computational
tasks such as AI algorithms and infotainment functions,
while the other MCU runs simple, real-time based appli-
cations typically used for in-vehicle and diagnostics
communication. The two MCUs are connected with a
serial peripheral interface allowing communication
between these two applications (figure 2).

Although this approach allows for the reuse of standard
software architectures, it is inefficient and quite costly
to add dedicated hardware for each system. Moreover,
it is simply asking too much to have serial communica-
tion interfaces to provide reliable communication
between these systems. Another approach is to port
real-time applications over Linux.

Figure 2. Current approaches for infotainment/AUTOSAR consolidation in
the cockpit domain.

Infotainment
application

AUTOSAR
application

Infotainment application
AUTOSAR on Linux

Application
microprocessor

ECU ECU

MCU Application microprocessor

SPI/
PCIe

It is clear that current approaches to consolidate hetero-
geneous automotive applications on the same hardware
are inefficient. Siemens Digital Industries Software
provides multiple products that can be used to address
such problems. For instance, Siemens Embedded
Multicore Framework can be used to deploy multiple
operating systems across homogenous and heteroge-
neous multicore processors. This solution is based on
the OpenAMP standard co-written by Mentor, A Siemens
Business and Xilinx. Another approach is to deploy the
Siemens Embedded Hypervisor, which uses virtualiza-
tion techniques to consolidate multiple guest operating
systems on the same processor.

This paper presents the concept of virtualization, an
efficient alternative automotive OEMs can take when
developing heterogeneous automotive applications.
The paper demonstrates
how Siemens Embedded
Hypervisor can be used
to consolidate a real-
time AUTOSAR applica-
tion with a Linux-based
application. The solution
depicted uses the TI
Jacinto 6 infotainment
evaluation module
(figure 3).

Figure 3. TI Jacincto 6 infotainment
evaluation module. Copyright® 2019
Texas Instruments, Inc.

White paper | Using hypervisor for infotainment and Autosar consolidation on a single ECU

5Siemens Digital Industries Software

System architecture and methodology

This section defines the characteristics of virtualized
environments and the methodologies used to satisfy
heterogeneous automotive applications requirements.

Virtualized environments
The core of achieving a consistent virtualized environ-
ment lies in handling sensitive instructions that affect
or depend on the state of the processor hardware. The
techniques to achieve this can be summarized as
follows:

• Full virtualization: This technique depends on a
binary translation to enable hypervisor emulation for
sensitive instructions. It allows for unmodified guests
to run over a hypervisor, but causes performance
issues due to the overhead of emulating all sensitive
instructions.

• Para-virtualization: With this approach, the guest is
aware that it runs over a hypervisor and uses specific
hypervisor calls for operations involving hardware
manipulation. This method eliminates overhead pen-
alties of sensitive instructions emulation, but requires
modifying a guest to be able to run over a hypervisor.

• Hardware-assisted virtualization: This technique
gets the most from full- and para-virtualizations
by using hardware extensions to handle sensitive
operations, thus removing the overhead of hypervisor
emulation in most cases without the need to modify
guests to run over the hypervisor. Of course, the
drawback to this method is that it only works with
modern processors with virtualization support.

CPU virtualization
Arm® TrustZone® is a built-in hardware security solution
that defines a security domain consisting of two worlds:
secure and non-secure. A processor mode is introduced
to monitor world switching, and a privileged instruction
(Secure Monitor Call) is introduced to bridge software
stacks of the two worlds (through monitor software).
This mode control switching is orthogonal to processor
mode switching as seen in figure 4.

Although primarily designed for security, the TrustZone
can be utilized as a method for hardware-assisted virtu-
alization for mixed-critical systems. The TrustZone
extension alone cannot be used to handle hypervisor
code because there is no way to trap instructions for
non-secure world to secure world which makes it
impossible to virtualize different guests in the non-
secure world. However this can be achieved using new
HYP mode which reduces the complexity of hypervisor
design and the cost of sensitive instruction emulation as
it applies the trap- and-emulate technique using its own
dedicated registers.

Figure 4. Current Armv7 CPU modes.

PL1 monitor mode

Non-secure world

PL0 user mode PL0 user mode

PL1 Kernel mode PL1 Kernel mode

PL2 Hype mode

Secure world

Figure 5. Memory addresses translation.

1st stage page
table translation

Virtual address Physical address
Intermediate

physical address

Virtual machine Hypervisor

2nd stage page
table translation

White paper | Using hypervisor for infotainment and Autosar consolidation on a single ECU

6Siemens Digital Industries Software

Memory virtualization
A new stage of address translation is added to decouple
the management of memory addresses by the guest
kernel from physical memory. This is achieved through
Intermediate Physical Addresses (IPA) which are trans-
lated to Physical Addresses (PA) using 2nd stage page
table translation. This stage is completely transparent to
the guest kernel and protects physical memory from
unauthorized access from guests. Figure 5 shows the
stage of address translation for virtual machines run-
ning over a hypervisor.

It‘s also possible to remove 2nd stage address translation
from HYP mode so that IPA and PA addresses are the
same.

Arm‘s generic interrupt controller
The Arm generic interrupt controller consists primarily
of two components:

• The Distributor (GICD): Performs interrupts priori-
tization and routing to all CPUs. Also responsible for
software interrupts generation.

• The CPU Interface (GICC): Responsible for handling
interrupts on the CPU level as it accepts interrupts
from the distributor depending on the current priority
level of the CPU. Responsible for acknowledging and
signaling the end of interrupts.

Arm‘s virtual CPU interface
The virtualization extension for generic interrupt con-
troller in Arm adds another component, which is the
virtual CPU interface. The virtual CPU interface registers
have the same programming model as physical CPU
interface registers so the guest kernel will not be aware
if it is communicating with the physical or virtual CPU. It
will always use the addresses of the physical interface,
but in case the software is virtualized, the hypervisor
could use 2nd stage address translation to redirect that
interface to virtual CPU registers. This design eliminates
the need for emulating the CPU interface access so the
guest OS can perform frequent tasks like interrupt
acknowledgment more efficiently.

The hypervisor manages all physical interrupts through
the distributor and routes them to the guest as virtual
interrupts through list registers, which is a list that the
hypervisor uses to maintain the state of virtual inter-
rupts. In this way, the hypervisor virtualizes the func-
tionality of the distributor for all guests, but this also
means that guest access for distributor registers must
be emulated.

In the new architecture of Arm‘s generic interrupt con-
troller, the process of interrupt deactivation can be
separated into two steps: 1) by lowering CPU priority,
and 2) interrupt deactivation. Separating these two
steps can be beneficial when doing virtualization. After
the hypervisor receives a physical interrupt and routes it
to the guest kernel as a virtual interrupt, it can lower
the priority of the CPU while the virtual interrupt is still
being processed. When CPU priority is lowered, new
interrupts can be triggered which allows the hypervisor
to prioritize received interrupts more efficiently before
triggering them to guests. In this configuration, when
the guest kernel deactivates the virtual interrupt, the
physical interrupt will also be deactivated.

Generic timer
The generic timer module provides for each CPU a real-
time counter and a timer that can be used to generate
interrupts after configured periods of time. Typically,
any kernel needs to have control and be able to manip-
ulate a timer in order to schedule events in real time.
This means in the case of virtualization, the hypervisor
would have to emulate all access points of the guests to
timers which is extremely inefficient. This would reduce
real-time performance drastically. This is why generic
timers in Arm architectures provide virtual counters and
virtual timers, which can be used by the guest kernel
without trapping the hypervisor. The guest kernel
should be able configure the stop/restart virtual timers
without hypervisor intervention, while the hypervisor
uses physical timers directly for its own scheduling
purpose. The virtual counter can be configured with an
offset from physical counter so that each guest will
have its own relative time. Moreover, virtual counters
will automatically stop in case of switching to HYP mode
which isolates the guests from hypervisor operation.

White paper | Using hypervisor for infotainment and Autosar consolidation on a single ECU

7Siemens Digital Industries Software

Siemens Embedded Hypervisor

There are two types of hypervisors commonly in use
today (figure 6):

• Type 1 Native Hypervisor: A hypervisor that runs
natively on hardware as it acts as an operating system
in the core.

• Type 2 Hosted Hypervisor: This type of hypervisor
must be hosted by another operating system, and is
only responsible for virtualizing the guest operating
system using the resources available to it from the
host operating system.

Type 1 Hypervisor

Hardware Hardware
Host OS

Type 2 Hypervisor Other
Apps

Guest
OS 1

Guest
OS 0

Guest
OS 1

Guest
OS 2

Figure 6. Interfaces across the XIL-levels do not match when data,
languages, or tools change.

Siemens Embedded Hypervisor is a type 1 hypervisor
which is more convenient by nature for embedded
system applications where operating systems are simple
enough to run natively on hardware with deterministic
behavior. For Arm targets, the Siemens Embedded
Hypervisor utilizes Arm virtualization extensions making
the choice of simple type 1 hypervisor more appropriate
in the design of CPU virtualization. Arm has introduced
a new HYP mode which is not rich with registers like
other modes so the hypervisor needs to be simple
enough to utilize these registers. Siemens Embedded
Hypervisor is targeted for embedded applications and is
designed using microkernel architecture where the core
of the kernel consolidates the most basic functionalities
needed by the hypervisor to run on the physical
hardware.

While the addition of other components and services is
configurable, this approach has multiple benefits as it
decreases the size of the trusted computing base in the
system, making it easier to qualify the most critical
parts of the system to the highest levels of safety. It also
minimizes the memory footprint of the hypervisor

according to guest needs such as unused functions
which can then be configured to be removed from
hypervisor image.

Siemens
Linux®

So
ur

ce
ry

™
 C

od
eB

en
ch

Nucleus®
RTOS

Hardware

Arm® TrustZone®

Siemens Embedded Hypervisor
Type 1

Memory Graphics Connectivity Touchscreen

Capital™
VSTAR

Bare Metal
Environment

Figure 7. Siemens Embedded Hypervisor.

Siemens Embedded Hypervisor (figure 7) also utilizes
Arm TrustZone to provide better isolation between
virtual machines and supports multiple types of guest
OSes such as:

• Android

• Capital VSTAR

• Siemens Embedded (Flex or Moni OS) Linux

• Nucleus RTOS

Hardware device access across guests
Siemens Embedded Hypervisor provides multiple mod-
els for hardware device access, allowing more flexibility
in system design. Some of these models include:

• Direct access: Assigns hardware devices to be owned
exclusively by a virtual machine which allows direct
access. This is beneficial in case a hardware device is
designed on the system level to be used by only one
virtual machine as there will be no need for hypervi-
sor intervention to improve system performance.

• Shared access: When a hardware device is owned
by a virtual machine and realizes that this device is
shared, so the handling is done on the virtual machine
level.

White paper | Using hypervisor for infotainment and Autosar consolidation on a single ECU

8Siemens Digital Industries Software

• Emulated access: A common model for sharing
hardware devices across virtual machines where the
hypervisor controls device access through trap-and-
emulate techniques while each virtual machine thinks
that it owns the hardware device.

• Virtual access: Similar to emulated access where the
hypervisor owns the hardware device, but the virtual
machine realizes that it doesn’t own the hardware
device and uses a virtual driver for hardware access,
thus eliminating the need for emulating the device,
which decreases emulation overhead.

VirtiO support for virtual devices
The virtual device access model is considered a kind of
para-virtualization technique as it requires virtual
machines to implement a software interface with the
hypervisor in order to handle virtual device access with-
out the need for any kind of emulation.

VirtIO is a virtualization standard for para-virtualized
device drivers, providing a standard application pro-
grammable interface so that it can be used by hypervi-
sors and virtual machines to interact with common
virtual devices. As seen in figure 8, a VirtIO architecture
design consists of front-end drivers which are imple-
mented in guests, back-end drivers which are imple-
mented in the hypervisor, and virtual queues that han-
dle communication between guest and hypervisor. Each

VirtIO device will have its own front- and end-driver
implementation.

The Siemens Embedded Hypervisor uses the memory
mapped input output (MMIO) method for VirtIO devices
and supports VirtIO Net, VirtIO Block and VirtIO Console
devices. VirtIO is also supported in Linux.

Figure 8. VirtIO architecture overview.

VM 1

Hypervisor

Front-end
drivers

Front-end
drivers

Back-end drivers

VirtIO
queues

VirtIO devices

VM 2

Virtualization for automotive software

Current approaches used to tackle the complexities
described earlier in this paper (cockpit domain units)
are both cost prohibitive and lacking in performance.
Utilizing virtualization in automotive software architec-
ture provides a better approach when taking on these
complexities. This can be achieved by encapsulating
different heterogeneous automotive platforms inside
virtual machines running on the same hardware. This
approach not only provides a more efficient way of
communication by using inter-VM communication
instead of serial connections, but also reduces the cost
of adding a dedicated microcontroller to each platform.
It also reduces the development cost by reusing legacy

platforms as encapsulated virtual machines without the
need for new adaptation efforts.

Inter-VM communication can be achieved using simple
shared memory access techniques or by using more
structured frameworks like VirtIO. Although AUTOSAR
doesn’t support VirtIO, it provides a specification named
Complex Device Drives (CDDs) which allows integrating
non-supported drivers like VirtIO in a standardized way.

Despite the benefits of virtualization for automotive
software, the applicability of such an approach depends
on the evaluation of application’s performance - while
running in a virtualized environment making sure the
system’s hard real-time requirements are still being met.

White paper | Using hypervisor for infotainment and Autosar consolidation on a single ECU

9Siemens Digital Industries Software

System implementation

This section describes how to encapsulate AUTOSAR and
Linux guests in the Siemens Embedded Hypervisor to
run on a TI Jacinto 6 infotainment platform.

Siemens Embedded Hypervisor configuration
Because the Siemens Embedded Hypervisor is designed
as a microkernel, it allows the user to configure which
drivers and components are added to the hypervisor
image according to the guest needs. Guest information
is supplied to the hypervisor through the device tree
source files (DTS). These files are defined by the
Siemens Embedded Hypervisor data driven configura-
tion binding and is used by the hypervisor to know the
number of virtual machines, the address mapping, the
resources assigned to each virtual machine, and the
number of virtual devices. After the Siemens Embedded
Hypervisor parses the project configuration and gener-
ates the binary, it uses image tree source files (ITS) to
package all of the guest binaries, along with the hyper-
visor binary, into a single monolithic image which is
then deployable on the target hardware.

Virtualizing guests
For a Linux guest, a pre-built image is used for Siemens
Embedded Linux, which is a commercial Linux distribu-
tion based on the Yocto® Project and includes a rich
feature set useful for embedded applications.

Siemens Embedded Linux is virtualized through a para-
virtualization layer which allows it to run over the
hypervisor. For the AUTOSAR guest, Capital VSTAR
implements the AUTOSAR standard. No virtualization
efforts are needed for the VSTAR OS to run over Arm®
Cortex-A15 hardware which shows the power of hard-
ware-assisted virtualization extensions in Arm. But it’s
important to note what type of timers the OS supports.
In the case of a virtualized environment, it would be
impractical for the guest OS to use the physical timer
directly as this would add emulation overhead that may
affect the application performance. The alternative
solution would be to either use the Arm virtual timer or
to assign a dedicated general purpose timer for the
virtual machine, so guest access to this timer will not
need to be emulated.

Another key factor in guest configuration is a virtual
machine to CPU core mapping. CPU sharing between
multiple virtual machines introduces context switching
overhead and increases the complexity of the design as
it will depend on the scheduling algorithms used. This
will impact application performance and will not be
applicable to real-time virtual machines as deterministic
behavior needs to be guaranteed in order to meet all
hard timing requirements. For that reason, one-to-one
mapping will be used between the virtual machines and
CPUs.

White paper | Using hypervisor for infotainment and Autosar consolidation on a single ECU

10Siemens Digital Industries Software

AUTOSAR demonstration

For the AUTOSAR demo application, the goal is to
achieve hard real-time requirements of the schedule
table expiry points triggering. The key factors for this
goal in the virtualized environment are:

• IRQ routing to virtual machine

• Generic interrupt controller access

• Virtual timer access

Figure 9 depicts an overview of this demonstration. The
AUTOSAR application runs as VM1 on a dedicated core,
the application utilizes the AUTOSAR cryptographic
library to perform two operations which are MAC verifi-
cation and AES decryption of encrypted data (every
100ms) and another application is tasked with

processing decrypted data. This is organized using a
schedule table (figure 10) which is an AUTOSAR OS
entity that contains multiple expiry points with fixed
offsets to assure relative synchronization between data
decryption and data processing tasks.

The Linux application runs as VM2 on a dedicated core
and shares UART console with the hypervisor to allow
switching between hypervisor console and Linux con-
sole where the latter allows interfacing with the Linux
file system (figure 11).

AUTOSAR
application

Hypervisor

Application microprocessor
(multicore)

ECU

Linux
application

Figure 9. AUTOSAR demonstration overview.

Schedule table duration

Expiry point 1
offset

MAC verification
Data decryption task

Data processing
task

Expiry point 2
offset

Figure 10. Schedule table and task overview.

Figure 11. Switching between Siemens Embedded Hypervisor and Siemens
Embedded Linux consoles.

White paper | Using hypervisor for infotainment and Autosar consolidation on a single ECU

11Siemens Digital Industries Software

This paper has demonstrated how Siemens Embedded
Hypervisor introduces a reliable solution for consolidat-
ing both infotainment and AUTOSAR applications on the
same ECU. This is possible due to the efficient perfor-
mance and the low cost associated with porting applica-
tions. Although this approach relies on hardware sup-
port, it is already commonly used today in infotainment
domain ECUs.

The wide flexibility of the Siemens Embedded
Hypervisor configuration allows the user to decrease
the intervention of the hypervisor to minimal, which
satisfies different application requirements even in
situations where real-time applications with hard timing
requirements are required.

Standardization of virtualization in automotive software
architecture is an important step towards deploying
advanced solutions in today’s ECUs. For that very rea-
son, Siemens Embedded Hypervisor supports standards
such as VirtIO for virtual devices or AUTOSAR for in-
vehicle, real-time applications. Developments such as
these should encourage automotive standardization
groups to adopt virtualization solutions in their
standards.

Conclusion

AUTOSAR application runtime results

The total CPU load when running in virtualized environ-
ment increased only by ~0.2% which is the overhead
added by IRQ routing and hypervisor scheduler han-
dling. This represents the minimum overhead intro-
duced by the hypervisor to run basic functionalities of
the Capital VSTAR OS. The overall timing behavior of the
AUTOSAR application is profiled to examine the effect of
hypervisor overheads during application operation. This
was done using a feature provided by the Capital VSTAR
OS. This feature provides the ability to configure hooks
at different points of the execution path like entering
kernel, exiting kernel, changing the state of certain
task, triggering of an event/alarm, and so on. These
hooks can be used to monitor the timings of critical
events during application runtime by reading the
generic timer.

It was confirmed that using the AUTOSAR OS runtime
measurement, the application performance was not
affected when running in a virtualized environment.

Since there was no overhead for virtual timer access or
GIC CPU interface access, kernel entry and exit times for
the AUTOSAR OS didn’t experience any changes when
running in a virtualized environment. IRQ routing time
was very short (561 nanoseconds for 1GHz clock fre-
quency) so the latency for the OS timer interrupt was
not affected. Moreover, the VSTAR AUTOSAR OS works
as a tickless timer, where timer interrupts are only
triggered on OS action points and not every fixed slice
of time. As a result, the tickless timer feature limits the
number of virtual timer interrupts needed and
decreases the overhead of IRQ routing - schedule table
expiry points and the time for scheduling tasks were not
affected.

siemens.com/software
© 2021 Siemens. A list of relevant Siemens trademarks can be found here.
The registered trademark Linux® is used pursuant to a sublicense from LMI, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.
Other trademarks belong to their respective owners.

81433-C2 2/21 H

About Siemens Digital Industries Software
Siemens Digital Industries Software is driving transfor-
mation to enable a digital enterprise where engineer-
ing, manufacturing and electronics design meet tomor-
row. The Xcelerator™ portfolio, the comprehensive and
integrated portfolio of software and services from
Siemens Digital Industries Software, helps companies of
all sizes create and leverage a comprehensive digital
twin that provides organizations with new insights,
opportunities and levels of automation to drive innova-
tion. For more information on Siemens Digital Industries
Software products and services, visit siemens.com/
software or follow us on LinkedIn, Twitter, Facebook
and Instagram. Siemens Digital Industries Software –
Where today meets tomorrow.

About the author
Mohamed Mounir is an embedded software engineer
with hands-on experience working with AUTOSAR mod-
ules. He brings over 13 years of experience to his cur-
rent role at Siemens. Mohamed has had the opportunity
to work with a variety of tier ones and OEMs directly in
different types of projects gaining wide experience in
automotive software. Mohamed is currently receiving
his M.Sc. degree from Ain Shams University where his
research is focused on using virtualization concepts in
automotive systems to achieve scalable and secure
architectures.

Siemens Digital Industries Software

Headquarters
Granite Park One
5800 Granite Parkway
Suite 600
Plano, TX 75024
USA
+1 972 987 3000

Americas
Granite Park One
5800 Granite Parkway
Suite 600
Plano, TX 75024
USA
+1 314 264 8499

Europe
Stephenson House
Sir William Siemens Square
Frimley, Camberley
Surrey, GU16 8QD
+44 (0) 1276 413200

Asia-Pacific
Unit 901-902, 9/F
Tower B, Manulife Financial Centre
223-231 Wai Yip Street, Kwun Tong
Kowloon, Hong Kong
+852 2230 3333

http://siemens.com/software
https://www.plm.automation.siemens.com/global/en/legal/trademarks.html
http://siemens.com/software
http://siemens.com/software
https://www.linkedin.com/company/siemenssoftware/
https://twitter.com/siemenssoftware
https://www.facebook.com/SiemensDISoftware
https://www.instagram.com/siemenssoftware/

