
Executive summary
Current approaches used to tackle the complexities in cockpit domain units 
are both cost prohibitive and lacking in performance. Utilizing virtualization in 
automotive software architecture provides a better approach when taking on 
these complexities. This can be achieved by encapsulating different heteroge-
neous automotive platforms inside virtual machines running on the same 
hardware. This approach not only provides a more efficient way of communi-
cation and reduces the cost of adding a dedicated micro-controller to each 
platform. It also reduces the development cost by reusing legacy platforms as 
encapsulated virtual machines without the need for new adaptation efforts.
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Introduction

Today’s automotive manufacturers are racing to deploy 
new and innovative functionalities in the modern vehi-
cle with technologies that include the human-machine 
interface (HMI), cloud-based services, vehicle ad-hoc 
networks (VANET) and autonomous driving. These new 
technologies increase the complexity of vehicle’s electri-
cal and electronics (E/E) architecture and add new 
requirements for connected software systems. The 
number of Electronic Control Units (ECUs) is constantly 
increasing with over 100 ECUs in a modern vehicle. This 
forces automotive OEMs to consolidate multiple units 
into a single, high-computing platform.

While this approach simplifies the networking model of 
the vehicle, it adds more challenges to the automotive 
software systems architecture. These same challenges 
exist in the cockpit domain, appearing in Advanced 
Driver Assistance Systems (ADAS), infotainment head 
units, and Telematics (figure 1). To further complicate 
matters, these software applications now require 
greater variations in their system requirements in terms 

of safety, security and connectivity. In-vehicle commu-
nications and safety critical requirements often require 
real-time operating systems (RTOSes), while infotain-
ment applications, which are non-safety relevant, run 
on Linux general purpose operating systems. The com-
bination of the two OSes enables the heterogeneous 
nature of these applications.

Figure 1. Cockpit domain controller network.
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unit
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Current approaches

A current approach that might be used to tackle this 
problem is to add two microcontrollers (MCUs) on the 
same electronic control unit. One MCU runs the Linux®-
based application responsible for high-computational 
tasks such as AI algorithms and infotainment functions, 
while the other MCU runs simple, real-time based appli-
cations typically used for in-vehicle and diagnostics 
communication. The two MCUs are connected with a 
serial peripheral interface allowing communication 
between these two applications (figure 2).

Although this approach allows for the reuse of standard 
software architectures, it is inefficient and quite costly 
to add dedicated hardware for each system. Moreover, 
it is simply asking too much to have serial communica-
tion interfaces to provide reliable communication 
between these systems. Another approach is to port 
real-time applications over Linux.

Figure 2. Current approaches for infotainment/AUTOSAR consolidation in 
the cockpit domain.
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It is clear that current approaches to consolidate hetero-
geneous automotive applications on the same hardware 
are inefficient. Siemens Digital Industries Software 
provides multiple products that can be used to address 
such problems. For instance, Siemens Embedded 
Multicore Framework can be used to deploy multiple 
operating systems across homogenous and heteroge-
neous multicore processors. This solution is based on 
the OpenAMP standard co-written by Mentor, A Siemens 
Business and Xilinx. Another approach is to deploy the 
Siemens Embedded Hypervisor, which uses virtualiza-
tion techniques to consolidate multiple guest operating 
systems on the same processor.

This paper presents the concept of virtualization, an 
efficient alternative automotive OEMs can take when 
developing heterogeneous automotive applications. 
The paper demonstrates 
how Siemens Embedded 
Hypervisor can be used 
to consolidate a real-
time AUTOSAR applica-
tion with a Linux-based 
application. The solution 
depicted uses the TI 
Jacinto 6 infotainment 
evaluation module 
(figure 3).

Figure 3. TI Jacincto 6 infotainment 
evaluation module. Copyright® 2019 
Texas Instruments, Inc.
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System architecture and methodology

This section defines the characteristics of virtualized 
environments and the methodologies used to satisfy 
heterogeneous automotive applications requirements.

Virtualized environments
The core of achieving a consistent virtualized environ-
ment lies in handling sensitive instructions that affect 
or depend on the state of the processor hardware. The 
techniques to achieve this can be summarized as 
follows:

• Full virtualization: This technique depends on a 
binary translation to enable hypervisor emulation for 
sensitive instructions. It allows for unmodified guests 
to run over a hypervisor, but causes performance 
issues due to the overhead of emulating all sensitive 
instructions.

• Para-virtualization: With this approach, the guest is 
aware that it runs over a hypervisor and uses specific 
hypervisor calls for operations involving hardware 
manipulation. This method eliminates overhead pen-
alties of sensitive instructions emulation, but requires 
modifying a guest to be able to run over a hypervisor.

• Hardware-assisted virtualization: This technique 
gets the most from full- and para-virtualizations 
by using hardware extensions to handle sensitive 
operations, thus removing the overhead of hypervisor 
emulation in most cases without the need to modify 
guests to run over the hypervisor. Of course, the 
drawback to this method is that it only works with 
modern processors with virtualization support.

CPU virtualization
Arm® TrustZone® is a built-in hardware security solution 
that defines a security domain consisting of two worlds: 
secure and non-secure. A processor mode is introduced 
to monitor world switching, and a privileged instruction 
(Secure Monitor Call) is introduced to bridge software 
stacks of the two worlds (through monitor software). 
This mode control switching is orthogonal to processor 
mode switching as seen in figure 4.

Although primarily designed for security, the TrustZone 
can be utilized as a method for hardware-assisted virtu-
alization for mixed-critical systems. The TrustZone 
extension alone cannot be used to handle hypervisor 
code because there is no way to trap instructions for 
non-secure world to secure world which makes it 
impossible to virtualize different guests in the non-
secure world. However this can be achieved using new 
HYP mode which reduces the complexity of hypervisor 
design and the cost of sensitive instruction emulation as 
it applies the trap- and-emulate technique using its own 
dedicated registers.

Figure 4. Current Armv7 CPU modes.
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Memory virtualization
A new stage of address translation is added to decouple 
the management of memory addresses by the guest 
kernel from physical memory. This is achieved through 
Intermediate Physical Addresses (IPA) which are trans-
lated to Physical Addresses (PA) using 2nd stage page 
table translation. This stage is completely transparent to 
the guest kernel and protects physical memory from 
unauthorized access from guests. Figure 5 shows the 
stage of address translation for virtual machines run-
ning over a hypervisor.

It‘s also possible to remove 2nd stage address translation 
from HYP mode so that IPA and PA addresses are the 
same.

Arm‘s generic interrupt controller
The Arm generic interrupt controller consists primarily 
of two components:

• The Distributor (GICD): Performs interrupts priori-
tization and routing to all CPUs. Also responsible for 
software interrupts generation.

• The CPU Interface (GICC): Responsible for handling 
interrupts on the CPU level as it accepts interrupts 
from the distributor depending on the current priority 
level of the CPU. Responsible for acknowledging and 
signaling the end of interrupts.

Arm‘s virtual CPU interface
The virtualization extension for generic interrupt con-
troller in Arm adds another component, which is the 
virtual CPU interface. The virtual CPU interface registers 
have the same programming model as physical CPU 
interface registers so the guest kernel will not be aware 
if it is communicating with the physical or virtual CPU. It 
will always use the addresses of the physical interface, 
but in case the software is virtualized, the hypervisor 
could use 2nd stage address translation to redirect that 
interface to virtual CPU registers. This design eliminates 
the need for emulating the CPU interface access so the 
guest OS can perform frequent tasks like interrupt 
acknowledgment more efficiently.

The hypervisor manages all physical interrupts through 
the distributor and routes them to the guest as virtual 
interrupts through list registers, which is a list that the 
hypervisor uses to maintain the state of virtual inter-
rupts. In this way, the hypervisor virtualizes the func-
tionality of the distributor for all guests, but this also 
means that guest access for distributor registers must 
be emulated.

In the new architecture of Arm‘s generic interrupt con-
troller, the process of interrupt deactivation can be 
separated into two steps: 1) by lowering CPU priority, 
and 2) interrupt deactivation. Separating these two 
steps can be beneficial when doing virtualization. After 
the hypervisor receives a physical interrupt and routes it 
to the guest kernel as a virtual interrupt, it can lower 
the priority of the CPU while the virtual interrupt is still 
being processed. When CPU priority is lowered, new 
interrupts can be triggered which allows the hypervisor 
to prioritize received interrupts more efficiently before 
triggering them to guests. In this configuration, when 
the guest kernel deactivates the virtual interrupt, the 
physical interrupt will also be deactivated.

Generic timer
The generic timer module provides for each CPU a real-
time counter and a timer that can be used to generate 
interrupts after configured periods of time. Typically, 
any kernel needs to have control and be able to manip-
ulate a timer in order to schedule events in real time. 
This means in the case of virtualization, the hypervisor 
would have to emulate all access points of the guests to 
timers which is extremely inefficient. This would reduce 
real-time performance drastically. This is why generic 
timers in Arm architectures provide virtual counters and 
virtual timers, which can be used by the guest kernel 
without trapping the hypervisor. The guest kernel 
should be able configure the stop/restart virtual timers 
without hypervisor intervention, while the hypervisor 
uses physical timers directly for its own scheduling 
purpose. The virtual counter can be configured with an 
offset from physical counter so that each guest will 
have its own relative time. Moreover, virtual counters 
will automatically stop in case of switching to HYP mode 
which isolates the guests from hypervisor operation.
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Siemens Embedded Hypervisor

There are two types of hypervisors commonly in use 
today (figure 6):

• Type 1 Native Hypervisor: A hypervisor that runs 
natively on hardware as it acts as an operating system 
in the core.

• Type 2 Hosted Hypervisor: This type of hypervisor 
must be hosted by another operating system, and is 
only responsible for virtualizing the guest operating 
system using the resources available to it from the 
host operating system.

Type 1 Hypervisor

Hardware Hardware
Host OS

Type 2 Hypervisor Other 
Apps

Guest 
OS 1

Guest 
OS 0

Guest 
OS 1

Guest 
OS 2

Figure 6. Interfaces across the XIL-levels do not match when data,  
languages, or tools change.

Siemens Embedded Hypervisor is a type 1 hypervisor 
which is more convenient by nature for embedded 
system applications where operating systems are simple 
enough to run natively on hardware with deterministic 
behavior. For Arm targets, the Siemens Embedded 
Hypervisor utilizes Arm virtualization extensions making 
the choice of simple type 1 hypervisor more appropriate 
in the design of CPU virtualization. Arm has introduced 
a new HYP mode which is not rich with registers like 
other modes so the hypervisor needs to be simple 
enough to utilize these registers. Siemens Embedded 
Hypervisor is targeted for embedded applications and is 
designed using microkernel architecture where the core 
of the kernel consolidates the most basic functionalities 
needed by the hypervisor to run on the physical 
hardware.

While the addition of other components and services is 
configurable, this approach has multiple benefits as it 
decreases the size of the trusted computing base in the 
system, making it easier to qualify the most critical 
parts of the system to the highest levels of safety. It also 
minimizes the memory footprint of the hypervisor 

according to guest needs such as unused functions 
which can then be configured to be removed from 
hypervisor image.

Siemens 
Linux®

So
ur

ce
ry

™
 C

od
eB

en
ch

Nucleus® 
RTOS

Hardware

Arm® TrustZone®

Siemens Embedded Hypervisor 
Type 1

Memory Graphics Connectivity Touchscreen

Capital™ 
VSTAR

Bare Metal 
Environment

Figure 7. Siemens Embedded Hypervisor.

Siemens Embedded Hypervisor (figure 7) also utilizes 
Arm TrustZone to provide better isolation between 
virtual machines and supports multiple types of guest 
OSes such as:

• Android

• Capital VSTAR

• Siemens Embedded (Flex or Moni OS) Linux

• Nucleus RTOS

Hardware device access across guests
Siemens Embedded Hypervisor provides multiple mod-
els for hardware device access, allowing more flexibility 
in system design. Some of these models include:

• Direct access: Assigns hardware devices to be owned 
exclusively by a virtual machine which allows direct 
access. This is beneficial in case a hardware device is 
designed on the system level to be used by only one 
virtual machine as there will be no need for hypervi-
sor intervention to improve system performance.

• Shared access: When a hardware device is owned 
by a virtual machine and realizes that this device is 
shared, so the handling is done on the virtual machine 
level.
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• Emulated access: A common model for sharing 
hardware devices across virtual machines where the 
hypervisor controls device access through trap-and-
emulate techniques while each virtual machine thinks 
that it owns the hardware device.

• Virtual access: Similar to emulated access where the 
hypervisor owns the hardware device, but the virtual 
machine realizes that it doesn’t own the hardware 
device and uses a virtual driver for hardware access, 
thus eliminating the need for emulating the device, 
which decreases emulation overhead.

VirtiO support for virtual devices
The virtual device access model is considered a kind of 
para-virtualization technique as it requires virtual 
machines to implement a software interface with the 
hypervisor in order to handle virtual device access with-
out the need for any kind of emulation.

VirtIO is a virtualization standard for para-virtualized 
device drivers, providing a standard application pro-
grammable interface so that it can be used by hypervi-
sors and virtual machines to interact with common 
virtual devices. As seen in figure 8, a VirtIO architecture 
design consists of front-end drivers which are imple-
mented in guests, back-end drivers which are imple-
mented in the hypervisor, and virtual queues that han-
dle communication between guest and hypervisor. Each 

VirtIO device will have its own front- and end-driver 
implementation.

The Siemens Embedded Hypervisor uses the memory 
mapped input output (MMIO) method for VirtIO devices 
and supports VirtIO Net, VirtIO Block and VirtIO Console 
devices. VirtIO is also supported in Linux.

Figure 8. VirtIO architecture overview.
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Virtualization for automotive software

Current approaches used to tackle the complexities 
described earlier in this paper (cockpit domain units) 
are both cost prohibitive and lacking in performance. 
Utilizing virtualization in automotive software architec-
ture provides a better approach when taking on these 
complexities. This can be achieved by encapsulating 
different heterogeneous automotive platforms inside 
virtual machines running on the same hardware. This 
approach not only provides a more efficient way of 
communication by using inter-VM communication 
instead of serial connections, but also reduces the cost 
of adding a dedicated microcontroller to each platform. 
It also reduces the development cost by reusing legacy 

platforms as encapsulated virtual machines without the 
need for new adaptation efforts.

Inter-VM communication can be achieved using simple 
shared memory access techniques or by using more 
structured frameworks like VirtIO. Although AUTOSAR 
doesn’t support VirtIO, it provides a specification named 
Complex Device Drives (CDDs) which allows integrating 
non-supported drivers like VirtIO in a standardized way.

Despite the benefits of virtualization for automotive 
software, the applicability of such an approach depends 
on the evaluation of application’s performance - while 
running in a virtualized environment making sure the 
system’s hard real-time requirements are still being met.



White paper | Using hypervisor for infotainment and Autosar consolidation on a single ECU

9Siemens Digital Industries Software

System implementation

This section describes how to encapsulate AUTOSAR and 
Linux guests in the Siemens Embedded Hypervisor to 
run on a TI Jacinto 6 infotainment platform.

Siemens Embedded Hypervisor configuration
Because the Siemens Embedded Hypervisor is designed 
as a microkernel, it allows the user to configure which 
drivers and components are added to the hypervisor 
image according to the guest needs. Guest information 
is supplied to the hypervisor through the device tree 
source files (DTS). These files are defined by the 
Siemens Embedded Hypervisor data driven configura-
tion binding and is used by the hypervisor to know the 
number of virtual machines, the address mapping, the 
resources assigned to each virtual machine, and the 
number of virtual devices. After the Siemens Embedded 
Hypervisor parses the project configuration and gener-
ates the binary, it uses image tree source files (ITS) to 
package all of the guest binaries, along with the hyper-
visor binary, into a single monolithic image which is 
then deployable on the target hardware.

Virtualizing guests
For a Linux guest, a pre-built image is used for Siemens 
Embedded Linux, which is a commercial Linux distribu-
tion based on the Yocto® Project and includes a rich 
feature set useful for embedded applications.

Siemens Embedded Linux is virtualized through a para-
virtualization layer which allows it to run over the 
hypervisor. For the AUTOSAR guest, Capital VSTAR 
implements the AUTOSAR standard. No virtualization 
efforts are needed for the VSTAR OS to run over Arm® 
Cortex-A15 hardware which shows the power of hard-
ware-assisted virtualization extensions in Arm. But it’s 
important to note what type of timers the OS supports. 
In the case of a virtualized environment, it would be 
impractical for the guest OS to use the physical timer 
directly as this would add emulation overhead that may 
affect the application performance. The alternative 
solution would be to either use the Arm virtual timer or 
to assign a dedicated general purpose timer for the 
virtual machine, so guest access to this timer will not 
need to be emulated.

Another key factor in guest configuration is a virtual 
machine to CPU core mapping. CPU sharing between 
multiple virtual machines introduces context switching 
overhead and increases the complexity of the design as 
it will depend on the scheduling algorithms used. This 
will impact application performance and will not be 
applicable to real-time virtual machines as deterministic 
behavior needs to be guaranteed in order to meet all 
hard timing requirements. For that reason, one-to-one 
mapping will be used between the virtual machines and 
CPUs.
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AUTOSAR demonstration

For the AUTOSAR demo application, the goal is to 
achieve hard real-time requirements of the schedule 
table expiry points triggering. The key factors for this 
goal in the virtualized environment are:

• IRQ routing to virtual machine

• Generic interrupt controller access

• Virtual timer access

Figure 9 depicts an overview of this demonstration. The 
AUTOSAR application runs as VM1 on a dedicated core, 
the application utilizes the AUTOSAR cryptographic 
library to perform two operations which are MAC verifi-
cation and AES decryption of encrypted data (every 
100ms) and another application is tasked with 

processing decrypted data. This is organized using a 
schedule table (figure 10) which is an AUTOSAR OS 
entity that contains multiple expiry points with fixed 
offsets to assure relative synchronization between data 
decryption and data processing tasks.

The Linux application runs as VM2 on a dedicated core 
and shares UART console with the hypervisor to allow 
switching between hypervisor console and Linux con-
sole where the latter allows interfacing with the Linux 
file system (figure 11).

AUTOSAR 
application

Hypervisor

Application microprocessor 
(multicore)

ECU

Linux 
application

Figure 9. AUTOSAR demonstration overview.

Schedule table duration

Expiry point 1 
offset

MAC verification 
Data decryption task

Data processing  
task

Expiry point 2 
offset

Figure 10. Schedule table and task overview.

Figure 11. Switching between Siemens Embedded Hypervisor and Siemens 
Embedded Linux consoles.
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This paper has demonstrated how Siemens Embedded 
Hypervisor introduces a reliable solution for consolidat-
ing both infotainment and AUTOSAR applications on the 
same ECU. This is possible due to the efficient perfor-
mance and the low cost associated with porting applica-
tions. Although this approach relies on hardware sup-
port, it is already commonly used today in infotainment 
domain ECUs.

The wide flexibility of the Siemens Embedded 
Hypervisor configuration allows the user to decrease 
the intervention of the hypervisor to minimal, which 
satisfies different application requirements even in 
situations where real-time applications with hard timing 
requirements are required.

Standardization of virtualization in automotive software 
architecture is an important step towards deploying 
advanced solutions in today’s ECUs. For that very rea-
son, Siemens Embedded Hypervisor supports standards 
such as VirtIO for virtual devices or AUTOSAR for in-
vehicle, real-time applications. Developments such as 
these should encourage automotive standardization 
groups to adopt virtualization solutions in their 
standards.

Conclusion

AUTOSAR application runtime results

The total CPU load when running in virtualized environ-
ment increased only by ~0.2% which is the overhead 
added by IRQ routing and hypervisor scheduler han-
dling. This represents the minimum overhead intro-
duced by the hypervisor to run basic functionalities of 
the Capital VSTAR OS. The overall timing behavior of the 
AUTOSAR application is profiled to examine the effect of 
hypervisor overheads during application operation. This 
was done using a feature provided by the Capital VSTAR 
OS. This feature provides the ability to configure hooks 
at different points of the execution path like entering 
kernel, exiting kernel, changing the state of certain 
task, triggering of an event/alarm, and so on. These 
hooks can be used to monitor the timings of critical 
events during application runtime by reading the 
generic timer.

It was confirmed that using the AUTOSAR OS runtime 
measurement, the application performance was not 
affected when running in a virtualized environment.

Since there was no overhead for virtual timer access or 
GIC CPU interface access, kernel entry and exit times for 
the AUTOSAR OS didn’t experience any changes when 
running in a virtualized environment. IRQ routing time 
was very short (561 nanoseconds for 1GHz clock fre-
quency) so the latency for the OS timer interrupt was 
not affected. Moreover, the VSTAR AUTOSAR OS works 
as a tickless timer, where timer interrupts are only 
triggered on OS action points and not every fixed slice 
of time. As a result, the tickless timer feature limits the 
number of virtual timer interrupts needed and 
decreases the overhead of IRQ routing - schedule table 
expiry points and the time for scheduling tasks were not 
affected.
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