
Executive summary
Avoiding unexpected problems during the product development process is
the overriding challenge in complex product development. Issues are most
often caused by uncommunicated design assumptions, decisions and
changes. The cost of late discovery and design adjustments can be cost-
prohibitive. Model-based systems engineering (MBSE) focuses on creating
and exploiting domain models as the primary means of information
exchange between engineers, rather than on document-based information
exchange. Integrated MBSE – bringing systems engineering (SE) inside of
product lifecycle management (PLM) – enables your entire engineering
team to start integrated and stay integrated, heading off any potential
problems before they can surface.

Siemens Digital Industries Software

siemens.com/software

Start integrated,
stay integrated
Addressing your communication problems
in engineering

http://siemens.com/software

White paper | Start integrated, stay integrated

2Siemens Digital Industries Software

Contents

Abstract ... 3

The systems engineering process 5

The value proposition .. 7

Extending MBSE into the supply/design chain 10

Problem in a nutshell ... 12

Teamcenter advantage .. 12

Conclusion ... 13

White paper | Start integrated, stay integrated

3Siemens Digital Industries Software

Abstract

“ What we have here is a failure to
communicate.”

 Warden from the movie Cool Hand Luke

A failure to communicate is at the root of many engi-
neering false starts and failures and can have cata-
strophic consequences.

As product complexity increases it requires more engi-
neers dealing with mind-boggling complexity that are
required to:

• Do more with greater constraints and less time

• Deal with very demanding customers

• Interact with more and more people

The result is you no longer have an engineering prob-
lem, you have a communication and information man-
agement problem. This is exacerbated by each discipline
speaking a different language: mathematics, electron-
ics, software, construction, etc.

In this paper, we’ll examine how systems engineering is
supposed to be managing the cross-domain interactions
between product domains, but it speaks yet a another
language delivered in Microsoft® Excel®, Word and
PowerPoint®/Visio diagrams which don’t scale to the
now millions of lines of code, thousands of electronic
control units, complex mechanical interactions and
hundreds of thousands of requirements.

Discipline-specific models don’t scale as they are built
for specific disciplines and can’t communicate across
domains. We can’t expect the Systems Modeling
Language (SysML), the first attempt at a standard sys-
tem modeling language, to be learned by all the disci-
plines, thus the growing confusion at the product/
discipline boundaries where all the really bad product
miscommunication/mistakes/failures/recalls happen.

So how do you solve this communication problem?

With today’s products, an increasing combination of
mechanics, electronics and software that include com-
plex mechanical systems, hundreds of electronic control
units (ECUs) and millions of lines of code exponentially
increases the potential for error.

Since all the bad things in a
product’s life happen at these
interfaces/combinations, it is a
near certainty that problems
will occur. The goal is catching
these cross-product/inter-
domain problems early in the
lifecycle before they escape and
are discovered by customers
and result in expensive product
recalls; let’s call these “failure to
communicate” issues.

Nodes = 5
Potential links = 10
Networks = 210 1024

Nodes = 30, potential links = 435,
unique configurations = 2435

Number of atoms in the universe
est. between 2158 and 2246

White paper | Start integrated, stay integrated

4Siemens Digital Industries Software

The U.S. automotive industry is a good example as the
National Highway Traffic Safety Administration (NHTSA)
says there were 47 million vehicle recalls in 2018 affect-
ing 17 percent of U.S. vehicles (figure 4). The NHTSA
says each recall costs $100 per vehicle, resulting in $4.7
billion in direct-to-manufacturer costs, not including
indirect costs such as extra inventory, overnight ship-
ping parts, tarnished reputations, etc.

Figure 4: US Automotive Recalls summary by RecallMasters.com.

Here is an example of a combination-type recall/com-
munication problem from a large truck manufacturer:

The picture below shows an ECU with a zinc back plate
directly mounted on a steel crossmember. This resulted
in galvanic corrosion that eventually destroyed the ECU,
causing the fuel pump to shut down. The resulting
recall affected 86,000 vehicles and cost about $8.6
million (figure 5).

Figure 5: Recall of bad fuel pump control module.

The ability to see these types of cross-domain interac-
tions requires a higher altitude cross-domain product
architecture captured before starting product develop-
ment to detect and prevent these problems. Like a
building’s architecture, the product architecture is the

blueprint for the various downstream development
disciplines describing WHAT needs to be done and HOW
WELL to do it (the means of communicating). No one
can imagine starting a construction project without a
set of blueprints, but many product development orga-
nizations today don’t have a product architecture (or
integrated product architecture) and thus are experienc-
ing these types of costly product recalls as their product
complexity increases (often repeating the same
mistakes).

Further investigation into our recall shows this wasn’t
an engineering mistake but rather a purchasing error.
Purchasing decided to change suppliers in an attempt to
reduce costs and neglected to communicate material
and other requirements to the supplier, thus a new, less
expensive zinc back-plated ECU went smoothly into the
manufacturing chain without knowing it created a
galvanic corrosion problem until fuel pumps stopped
working months later, meaning that nearly everyone in
an organization that directly or indirectly affect the
product need to be thinking cross-domain systems
(even purchasing).

Of course, it’s not just vehicles that have these issues;
these types of communication problems happen in
nearly all complex, cross-domain development organi-
zations, like these examples from recent headlines.

The goal is to integrate product architecture where
architects establish WHAT needs to be done and HOW
WELL to do it with the product lifecycle. This is where a
set of relationships (often called the digital thread) that
run throughout the product are created. Those relation-
ships form issues that could surface in the future. To
avoid these problems, our goal is to integrate that
architected cross-domain communication digital thread
with the product lifecycle so we can be alerted to
potential problems and avoid costly mistakes.

White paper | Start integrated, stay integrated

5Siemens Digital Industries Software

The systems engineering process

Although the pyramid builders were systems engineers,
SE wasn’t formalized until the 1950s with complex
aerospace and defense projects such as the Polaris
Missile and early warning radar. The principals and
processes were developed into standards by various
standards organizations: International Organization for
Standardization (ISO)15288, Electronics Industry
Association (EIA) 632, Institute of Electrical and
Electronics Engineers (IEEE)1220 and others.

They describe principals such as defining the problem
before you solve it, understanding operational con-
cepts, managing system interactions and then move
through a V-like process as described in figure 8.

SoS Product definition

Product

U
se

 c
as

es

an
d

de
m

an
ds

Solution
(wished by
customer)

Scope
Constraints
Interactions

Selected
product

requirements

Derived
system

requirements

Concept design System design

Mechanical
design

EE design

M
ec

ha
tr

on
ic

BO

M

M
an

uf
ac

tu
rin

g
BO

M

As
 m

ai
nt

ai
ne

d
BO

M

Software
design

Purchase

Derived mechanical
requirements

Components
(virtual)

Components
(virtual)

Components
(binary)

Buy parts

Derived EE
requirements

Derived software
requirements

Derived by parts
requirements

Sub-system Component eBOM mBOM …

Product implementation Product build

Figure 8: Standard ISO15288-type left-to-right development process.

The SE process starts at the far left with the early product
development stages and works to the right. At the very
beginning of a product development process we start by
understanding how our product will work in the context
of other products and systems. For example, an airplane
interacts with many other systems, referred to as a sys-
tem of systems (SoS) such as air traffic control systems,
navigation systems, airports, maintenance, logistics,

environment, and more. Understanding these establishes
the scope, constraints, interactions, etc., for the product
describing how the product will interact within its opera-
tional environment. This process generates a series of
scenarios, use cases, demands and customer wishes that
creates the initial set of high-level requirements that are
the starting point for conceptual design.

Concept design is where we start looking for alternative
ways of accomplishing the requirements, which in turn
leads to subsystem design, eventually allocating WHAT
to do to various downstream development disciplines
(electrical, software, mechanical) and into the develop-
ment specific design tools for electronic computer-aided
design (ECAD) and mechanical computer-aided design
(MCAD). As these disciplines make design decisions it
turns into a bill-of-materials (BOM) that needs to be
manufactured, then maintained, and eventually retired.

Organizations with low development process maturity
typically start at the right side and work their way back-
ward through the process as cross-domain issues are
discovered (for example, starting where the problems
surface and money is hemorraging). As they work into
the development disciplines, the disciplines optimize
around their development silos, creating more issues
with the strongest domain winning at the cost of oth-
ers, ending up with disintegrated, unoptimized, unbal-
anced solutions that don’t meet the overall require-
ments. IEEE put it this way: “We are good at component
design with some 90 percent of components working as
designed. However, 50 percent of them fail when you
plug them into the system they were designed for.”

Figure 9: Silo optimized design on process.

SoS Product definition

Product

U
se

 c
as

es

an
d

de
m

an
ds

Solution
(wished by
customer)

Scope
Constraints
Interactions

Selected
product

requirements

Derived
system

requirements

Concept design System design

Mechanical
design

EE design

M
ec

ha
tr

on
ic

BO

M

M
an

uf
ac

tu
rin

g
BO

M

As
 m

ai
nt

ai
ne

d
BO

M

Software
design

Purchase

Derived mechanical
requirements

Components
(virtual)

Components
(virtual)

Components
(binary)

Buy parts

Derived EE
requirements

Derived software
requirements

Derived by parts
requirements

Sub-system Component eBOM mBOM …

Product implementation Product build

White paper | Start integrated, stay integrated

6Siemens Digital Industries Software

This points out one of the interesting things about the
SE process: if the early product definition process isn’t
done fast enough (for whatever reason), downstream
product development continues with or without the
blueprints, resulting in the late discovery of problems.
Thus, the value of SE decreases the later it is applied in
the project as the value of the architecture’s direction
becomes a costly burden as the late-design problem
correction edicts come down (or even start over on the
design). This is why American engineer Simon Ramo
(that’s the R in TRW) said, “All the really big mistakes are
made the very first day.” You already know this instinc-
tively as you know where the most leverage on a play-
ground teeter-totter/see-saw is (figure 10).

Figure 10: What a see-saw can teach us about project leverage.

Le
ve

ra
ge

Project timeline

Laying a project timeline under the see-saw, you know
instinctively where the leverage is. It’s not in the middle
of the project where we are working on mechanical,
electrical or other designs. The project leverage is early
in the lifecycle where the most important WHAT to do
and HOW WELL to do it decisions are made – so it
makes sense to get the architecture right from day one
and manage it with the rest of the product information.

Teamcenter® software is the keeper of product knowl-
edge, including product architecture knowledge
(remember the architecture is what established the
cross-domain relationships that enable balanced, recall-
free development). Teamcenter is part of Xcelerator, a
comprehensive and integrated portfolio of software and
services from Siemens Digital Industries Software.

Figure 11: Where Siemens solutions fit into the process.

SoS Product definition

Product

U
se

 c
as

es

an
d

de
m

an
ds

Solution
(wished by
customer)

Scope
Constraints
Interactions

Selected
product

requirements

Derived
system

requirements

Concept design System design

Mechanical
design

EE design

M
ec

ha
tr

on
ic

BO

M

M
an

uf
ac

tu
rin

g
BO

M

As
 m

ai
nt

ai
ne

d
BO

M

Software
design

Purchase

Derived mechanical
requirements

Components
(virtual)

Components
(virtual)

Components
(binary)

By parts

Derived EE
requirements

Managed by Teamcenter Managed by Polarion

Derived software
requirements

Derived by parts
requirements

Sub-system Component eBOM mBOM …

Product implementation Product build

TeamcenterTeamcenter

NX

Mentor

Polarion

QualityCenter

System modeling
workbench

Teamcenter
requirements

Simcenter

Our integrated MBSE goal is to integrate SE with the
product lifecycle starting at the beginning of the project
where the most important decisions are made and carry
those decisions throughout the product lifecycle. Those
what/how decisions establish the relationships that
carry the digital thread across the lifecycle into down-
stream development tools for guided/connected prod-
uct development communication, creating recall-free
products.

 Systems Engineering is about
defining the problem before
solving it.

White paper | Start integrated, stay integrated

7Siemens Digital Industries Software

The value proposition

SE and its model-based implementation (MBSE) is about
creating/communicating a product architecture that
considers all aspects of a product (requirements, cost,
materials, manufacturing, competition, reliability,
safety, …) and then drives the downstream develop-
ment process to deliver against that vision; it’s the
scaffolding that makes cross-domain communication
possible. We can’t create surprise-free products unless
everyone is on the same page, working towards a com-
mon mission, and understanding their part in the over-
all development process so they comprehend how their
part of the product fits with other domains (for exam-
ple, interfaces).

Since it’s impossible to predict/consider everything that
might happen during development (late delivery, unex-
pected change in customer requirements, unavailable
resource, etc.), systems engineers will switch gears and
perform the important role of executing the daily devel-
opment process to work alternatives, adjust plans, etc.,
as development surprises occur to arbitrate how to
handle the multiple cross-domain impacts of the unex-
pected. This is much like a building architect who cre-
ates the original set of plans for the construction crews
but then shifts to spending time at the construction site
to deal with surprises. If the architect isn’t there virtu-
ally or otherwise, the trades make their decisions in
isolation without understanding the consequences,
potentially resulting in costly setbacks.

Because of their background and experience, there are
fewer of these types of architects/engineers/leaders
than discipline specific engineers, but because of their
leverage they are among the project’s most critical
people. These architects need tools to help them cap-
ture the product architecture (accelerate capture and
integrate product architecture) and keep them ahead of
the construction crews. When we shift to design engi-
neering, manufacturing, planning, purchasing, support,
etc., the rest of the architecture’s lifecycle becomes
democratized, meaning that everyone involved in a
project needs a systems perspective in their aspect of
product support.

So, how bad is our communication problem?
As described earlier, different domains speak different
languages, making it difficult to communicate directly
between disciplines. This means that SE and the archi-
tecture it creates establishes the scaffolding needed for
cross-discipline communications. If that scaffolding is
disconnected (in documents, isolated tools, etc.) the
disciplines can’t communicate effectively leading to
additional inter-discipline/inter-model friction that
ultimately leads to communication failure.

You can understand/measure your communication
friction, by using a MBSE Maturity Assessment Matrix
based on standard SE development process and detailed
in the International Council on Systems Engineering
(INCOSE) handbook (figure 12).

Figure 12: MBSE Maturity Assessment Matrix based on standard SE
development process.

The Capability Assessment column (column A) docu-
ments what SEs do (per the process); the columns from
left to right describe various ways of doing those SE
tasks in disconnected up to integrated model-based
ways starting with disintegrated on the left to

White paper | Start integrated, stay integrated

8Siemens Digital Industries Software

integrated approaches on the right, creating a fast way
to assess where an organization is in their integrated,
continuously communicating MBSE journey. For exam-
ple, looking at the requirement management row from
left to right, organizations can manage requirements
using disconnected, uncontrolled spreadsheets and
documents, maintain requirements in managed docu-
ments, and in standalone requirement solutions such as
DOORs or Jama. Organizations can also move to indi-
vidual requirements that appear in other places (such as
a requirement showing up in a MATLAB or CAD model),
with the ultimate individual requirements integrated,
managed, and or configured with the rest of the prod-
uct data, related through to other domains creating
cross-domain impact visibility/traceability.

Describing another one, interface management,
remember, we care about interfaces in our products
because that’s where all the bad/unexpected things
happen in a product that cause product failures. Moving
from left-to-right on the interface management row, we
can manage interfaces in interface control documents
(ICDs). Or we can move up in maturity to managing
individual interfaces, interface libraries, grouped in
ways that support re-use (such as all the interfaces of
a transmission), or the best integrated functional mod-
eling that defines interfaces when you allocate a func-
tion to things performing those functions. This allows
us to understand where functions go no matter where
they are performed. For example, a wire in a harness
can tell you what functional interface it is carrying.

With those examples, we can quickly assess where we
are and use that to drive an organizational MBSE
process/journey towards model-based continuous
communications.

We’ve been gathering samples from a variety of indus-
tries and have developed a measure of dysfunctional
communication for an average organization (figure 13)
or broken out by industry (figure 14).

Figure 13: Average MBSE Assessment score for sampled organizations.

Figure 14: MBSE maturity by industry matrix.

White paper | Start integrated, stay integrated

9Siemens Digital Industries Software

We should point out that this is an optimistic model. We
ask respondents to think about the best experience they
can remember in their organization, meaning, these
lines represent the best projects they’ve seen. Imagine
what the problem programs look like (figure 15).

Figure 15: MBSE maturity by industry with tools.

The communication problem between the various tools
used to support a particular part of the systems devel-
opment process is clearly visible. Drawing lines of com-
munication to exchange information between tools
such as Requirements Management and SysML model-
ing tools, doesn’t solve the communication problem
since neither tool understands the big picture, product
configuration, change, history, variation, etc. You can

also see how these tools lock in an organization at a
particular level of communication maturity, rather than
allowing an organization to continue its journey to
more advanced communication. This leads to the con-
clusion of how important the systems development
process is on a PLM system to enable models to commu-
nicate in context as part of a scalable, single source of
product truth (figure 16).

Figure 16: MBSE maturity built on PLM.

This process view changes our perspective from think-
ing about individual tools to how to enable a continu-
ous communication model-based approach that lever-
ages integrated systems engineering’s ability to create
surprise-free products.

White paper | Start integrated, stay integrated

10Siemens Digital Industries Software

Extending MBSE into the supply/design
chain

Once we understand this integrated MBSE process, we
can look to the left (to our customers) and right (to our
suppliers) and realize they are part of our product devel-
opment system of systems (SoS) that starts with cus-
tomers and moves through us into our supply chain and
back. This product architecture drives and enables com-
munication for an entire product development chain.
We call this a model-based design chain (MBDC) that
expands the product development journey opportunity
left-to-right and back from the customer to the suppli-
ers and back.

This means if we are only thinking about our own orga-
nization, we’re not getting all the potential value (for
example, the value extends into the suppliers that are
contributing to the product development process). The
product architecture defines WHAT will be done and
HOW WELL it will be done not only to inside develop-
ment but also to the outside/purchased parts. Today,
once it’s decided what parts to purchase, a request for
proposal (RFP)/specifications is sent to the supplier
requesting quotes, etc. That spec describes the WHAT
and HOW WELL to the supplier so they can deliver some-
thing that integrates with the rest of the product to
deliver the customer required functionality. Today this
process is typically document-based with periodic
reviews to check progress, to make sure designs are
aligned, etc. Once delivered, systems integration brings
all the component subsystems into one system, hope-
fully cooperating to deliver required functionality or
sent back for redesign/updates when integration prob-
lems are discovered.

Per the Aerospace Vehicle Systems Institute (AVSI), a
consortium of the major air-framers, this design, then
integrate cycle/approach is no longer affordable. The
system integration problem consumes almost half of
the product development cycle and often takes longer
than original design, making building airplanes from
scratch no longer affordable (figure 17).

Estimated Onboard SLOC growth

Start integrated
Stay integrated

AVSI

Slope = 0.17718
Intercept = -338.5
Curve implies SLOC doubles
about every 4 years

Ln
(O

nb
oa

rd
 S

LO
C)

Year

20

18

16

14

12

10

8

1960 1970 1980 1990

$160 B299M

61M
27M

8M
B777: 4M

A330/340: 2M
A320: 800K

A310: 400K

A300FF: 40K

A300B: 4.6K

B757, B767: 190K
B747: 370K

B737: 470K

INS: 0.8K

134M

$7.8 B
Assumed
Affordability
Limit

$290 M
$81 M
$38 M

Line fit
Boeing
Airbus
Unaffordable

2000 2010 2020
6

The line fit is pegged at 27M SLOC because the projected SLOC sizes for 2010 through 2020 are unaffordable.
The COCOMO II estimated costs to develop that much software are in excess of $10 B.

http://savi.avsi.aero/

Figure 17: Aircraft unaffordability limits.

Of course, it’s not just aerospace that has this problem;
almost all multidomain industries pad their schedules
for system integration risk/failure, and no one is ever
surprised by a half program schedule padding. For
example, in the original equipment manufacturer (OEM)
and semiconductor business, it’s not uncommon for
OEMs to wait for prototypes before starting design,
delaying their time-to-market (TTM) and delaying semi-
conductor suppliers’ time-to-revenue (TTR).

White paper | Start integrated, stay integrated

11Siemens Digital Industries Software

With a communication-enabling integrated product
architecture in hand, we can solve this problem by
passing the portion of the system (complete with func-
tions, inputs/outputs, requirements, etc., with IP protec-
tion) to our suppliers, giving them a known integrated
model to work from in developing their subsystem. With
the help of PLM, periodically they “check in” models so
OEM-level integration can start earlier and continu-
ously, essentially eliminating the long, multiple, expen-
sive serial system integration cycles. This can potentially
save as much as half of the product development cycle
because the product is continuously integrated. This is
what we mean by start integrated, stay integrated
(figure 18).

If we could look at your development problem histories,
we have high confidence that changes were made
either on the OEM or supplier side that were not com-
municated/managed, resulting in system integration
problems (discovered late and very expensive). This
makes the integrated product architecture’s value even
greater when integrated with Teamcenter, keeping
track of who has what version and ensures everyone
(including suppliers) are on the same page when a
change is processed.

“ There is no greater waste than doing
efficiently something that shouldn’t be
done at all.”

 Peter Drucker
Management Consultant, Educator and Author

Figure 18: Supplier feedback loop to enable continuous integration.

SoS Product definition

Product

U
se

 c
as

es

an
d

de
m

an
ds

Solution
(wished by
customer)

Scope
Constraints
Interactions

Selected
product

requirements

Derived
system

requirements

Concept design System design

Mechanical
design

EE design

M
ec

ha
tr

on
ic

BO

M

M
an

uf
ac

tu
rin

g
BO

M

As
 m

ai
nt

ai
ne

d
BO

M

Software
design

Purchase

Derived mechanical
requirements

Components
(virtual)

Components
(virtual)

Components
(binary)

B

Derived EE
requirements

Derived software
requirements

Derived by parts
requirements

Sub-system eBOM mBOM …

Product implementation Product build

SupplierContinuous integration

White paper | Start integrated, stay integrated

12Siemens Digital Industries Software

Problem in a nutshell

Teamcenter advantage

The fear of product development surprises is what
keeps you up at night. We provide an integrated MBSE
solution that enables continuous communication across
domains through an integrated SoS product architec-
ture that prevents product development surprises by
ensuring we are always integrated across the entire
design chain (from customer to OEM to suppliers and
back). Remember, start integrated, stay integrated and
you’ll sleep much better.

Teamcenter offers you three important advantages:

1. By integrating SE/MBSE/product architecture with
embedded standard methodology with Teamcenter
PLM we enable continuous communications across
organizations. This drives product development from
a systems perspective under the watchful eye of an
integrated product architecture and system design
methodology that ensures the WHAT and HOW WELL
are implemented by the downstream development
disciplines (including suppliers) in an integrated
way. Doing this enables built-in compliance to
requirements and architecture alignment enabling
organizations to start integrated, stay integrated
(versus start design and integrate/fix later). This is
kind of a big deal. Without cross-domain communica-
tion, we end up discovering problems during system
integration. You already know this and in fact plan
for it by scheduling/planning up to half your program
schedules for system integration. Imagine the value

if you had confidence in your shared architecture to
eliminate that program padding.

2. Integrating MBSE with the product lifecycle also inte-
grates the product architecture with standard product
lifecycle services like change, variation, workflow
and more; for example, configuring the product also
configures the product architecture, requirements,
targets, test cases and interfaces across the entire
design chain.

3. Finally, a scalable Teamcenter infrastructure enables
global complex product development by ensuring
everyone participating in product development,
including suppliers, are on the same page and
have continuous communication. This ensures that
everyone, no matter what time zone, is guided by
the product architecture and working from current
information, creating integrated by design products.

White paper | Start integrated, stay integrated

13Siemens Digital Industries Software

The problem in almost all complex
product development is keeping
everyone on the same page to
avoid headline-grabbing prob-
lems discovered late in the prod-
uct development process (or by
customers) caused by uncom-
municated design assumptions,
decisions, and changes. The cost
of late discovery and design redo
can be daunting, resulting in
work around discussions that
leave significant damage in its
wake. There is some value in
these monuments for future generations like this
“Column of Shame” at a major engineering college that
serves as a lesson/warning to others when an architec-
ture mistake (or no architecture at all) is discovered too
late to correct, thus the integrated SE/MBSE mantra of
“Start integrated, stay integrated.”

In conclusion:

To create the cross-product digital thread to guide your
development and enable continuous communication,
you begin with product architecture that starts at the
top (system of systems).

• Like building architecture, system modeling defines
WHAT the product will do and HOW WELL to do it

• Product architecture must be integrated with the
product lifecycle to drive the development processes
(including configuration, change, workflow, variance)

• A streamlined/simplified standard system modeling
language with entwined standard methodology inte-
grated with Teamcenter guides and captures product
architecture

• Unlike disconnected MBSE tools, the integrated archi-
tecture establishes the cross-domain dependencies
needed to understand and manage complex cross-
domain products

• You can discover and better communicate issues now
versus later, allowing organizations and their supply/
design chains to start integrated, stay integrated

Conclusion

siemens.com/software
© 2020 Siemens. A list of relevant Siemens trademarks can be found here.
Other trademarks belong to their respective owners.

82097-C7 7/20 H

Siemens Digital Industries Software

Headquarters
Granite Park One
5800 Granite Parkway
Suite 600
Plano, TX 75024
USA
+1 972 987 3000

Americas
Granite Park One
5800 Granite Parkway
Suite 600
Plano, TX 75024
USA
+1 314 264 8499

Europe
Stephenson House
Sir William Siemens Square
Frimley, Camberley
Surrey, GU16 8QD
+44 (0) 1276 413200

Asia-Pacific
Unit 901-902, 9/F
Tower B, Manulife Financial Centre
223-231 Wai Yip Street, Kwun Tong
Kowloon, Hong Kong
+852 2230 3333

About Siemens Digital Industries Software
Siemens Digital Industries Software is driving transfor-
mation to enable a digital enterprise where engineering,
manufacturing and electronics design meet tomorrow.
Xcelerator, the comprehensive and integrated portfolio
of software and services from Siemens Digital Industries
Software, helps companies of all sizes create and lever-
age a comprehensive digital twin that provides organiza-
tions with new insights, opportunities and levels of
automation to drive innovation. For more information
on Siemens Digital Industries Software products and
services, visit siemens.com/software or follow us on
LinkedIn, Twitter, Facebook and Instagram. Siemens
Digital Industries Software – Where today meets
tomorrow.

http://siemens.com/software
https://www.plm.automation.siemens.com/global/en/legal/trademarks.html
http://siemens.com/software
https://www.linkedin.com/company/siemenssoftware/
https://twitter.com/siemenssoftware
https://www.facebook.com/SiemensDISoftware
https://www.instagram.com/siemenssoftware/

