
Executive summary
The evolution from a human-driven to a predominantly driverless automotive 
ecosystem is gradually, but inevitably taking place. As technology becomes 
increasingly pervasive and complex, automobiles are being transformed into 
sophisticated machines that can sense, perceive and make decisions autono-
mously in real time. The degree of complexity of software and control sys-
tems required to realize these autonomous machines will rise orders of mag-
nitude beyond human comprehension of logical complexity. As these 
machines are authorized to make decisions on their own, manufacturers will 
have to verify the integrity and authenticity of the software and hardware 
that are wired into them. Before putting these complex systems into practice, 
it is therefore important to simulate how they will perform under different 
scenarios.
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Abstract

It is critical to gain confidence in the functional safety 
performance of these systems and ensure they behave as 
intended by a defined set of rules. This white paper pro-
vides insight into Siemens Digital Industries Software’s 
approach to verifying and validating high-integrity sys-
tems operating in autonomous environments across the 
entire system of systems. This starts with the design of 
the chips and goes through system and vehicle develop-
ment up to the city level, where autonomous driving 
vehicles become part of mobility solutions.

With the introduction of Simcenter™ Prescan™ software 
360, Siemens introduces an off-the-shelf solution for 
validating and verifying autonomous driving vehicles on a 
mass scale. With the integration of a series of core prod-
ucts from within the Siemens portfolio, a process and 
toolchain has emerged that is being enriched with knowl-
edge of formal verification, design exploration and design 
of experiment (DoE) methodologies from our corporate 
technology teams. 

 Siemens introduces an  
off-the-shelf solution for 
validating and verifying 
autonomous driving  
vehicles on a mass scale. 
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Coverage-driven  
AV performance verification 

In this white paper we propose a user-friendly approach 
for defining and automatically translating requirements 
into a temporal logic language. Then we analyze the 
inconsistency in the requirements via model checker tools 
and define the region of interest in scenario planning for 
all actors. Finally, a down select of parameters enables an 
automated, constrained algorithm to provide feasible 
scenario combinations given correlated input parameters. 
This generates a formal verification algorithm that auto-
matically identifies edge cases or counter cases and thus 
enables trapping the bugs upfront. A probabilistic behav-
ior modeling framework creates a network of events to 
predict the likelihood of possible outcomes.

The problem definitions can be broadly classified  
into four areas:

1. Requirements specification and modeling
The requirements specification needs to define the rules 
of the autonomous systems and should have a clear 
description of how agents should behave in different 
scenarios and be clear about the in-and-out scope of the 
simulation envelope. Modeling the requirements requires 
the use of formalism to resolve ambiguity and identify 
contradictions in requirements.

2. Smart testing scenarios modeling
The number of scenarios in autonomous vehicle (AV) 
simulation testing will grow exponentially with an 
increase in the number of scenario variables. Many of 
these scenarios will be infeasible due to the assumption 
of independent variables. It is therefore critical to focus 
on testing the right scenarios by considering realistic 
correlations of variables that exist in practice. For 

instance, a scenario in which there is heavy snow and hot 
temperatures is unlikely to occur. Such variable correla-
tions must be defined for the purpose of experimental 
screening so only the right and feasible scenarios get 
simulated and tested. In the next step, a falsification 
approach is required to minimize the number of irrelevant 
scenarios, driving efficiency in the massive validation and 
verification execution plans. 

3. Behavioral modeling of agents
Beyond simulation-based testing, it is critical to establish a 
probabilistic network of agent behavior in an autonomous 
environment to predict key events and thereby activate 
the alert system for the vehicle user. This is needed to 
verify the risk of accidents in real time and alert/take 
mitigation actions for accident avoidance. Bayesian mod-
eling is one such probabilistic network that can be 
employed to create a dynamic network, which can be 
updated based on real-time information from perception-
based devices (sensors, radars, lidars, etc.).

4. Reliability and security modeling
An AV can perceive its environment, navigate and maneu-
ver without human actions. The AVs will have a high 
degree of acceptability when the security risks of automa-
tion are enumerated and evaluated. It is therefore vital to 
recognize threats, classify them and develop protection 
strategies for AVs. The goal is to develop a security model 
to quantify the risk and assess the likelihood of threats on 
AV components. Further, we should look at learning from 
failures observed during testing at the lab and make them 
part of the future test strategy on a continuous basis, 
typically in a distributed, multi-site scenario.



White paper | Simcenter Prescan360

4Siemens Digital Industries Software

Simcenter Prescan360

Figure 1 shows the high-level architecture of Simcenter 
Prescan360 for the first generation of coverage-driven AV 
performance verification. It depicts design/process orches-
tration engine (HEEDS™ software) and the virtual simula-
tion setup for autonomous systems (Simcenter Prescan), 
providing technical details about the process, and high-
lighting the possible process steps to be covered for 
realizing coverage-driven AV performance verification. 
This view is to be completed with the usage of require-
ments management tools, such as Polarion. Such tools 
will be interfaced in an increasingly automated manner in 
the future, to bring closed-loop, systematic virtual verifi-
cation through simulation.

Requirements specification and modeling
In a traditional systems-engineering lifecycle, the system 
is initially specified. This specification is then cascaded 
with increasing levels of technical details. Following that, 
the validation and verification of each element that has 
been specified is tested to see if it has been achieved. 
Extending the same principles to a fully integrated AV, the 
autonomous system is not the highest level of system 
that we must deal with. Instead, the higher level of the 

transport and operational systems need to be considered 
and validated to emerge with a seamless integration 
productivity [1].

Additionally, in terms of validation and verification, sce-
nario-based simulation and testing fundamentally require 
mapping test cases into requirements. For example, 
requirements might involve control and stabilizing of 
speed: Test cases should reflect the conditions in which 
this maneuverability might be challenging, like weather 
conditions, tire mechanics, etc. Hence, a scenario-based 
simulation is used to map specific requirements into a 
nucleus of test cases, thereby making the requirements 
representative within an operational design domain. 
Therefore, in addition to the traditional set of user 
requirements, the operational design domain can exhibit 
the requirements the autonomous system needs to 
exhibit in different scenarios. This journey then results in 
a massive set of requirements and scenarios that leads to 
the necessity of containing or limiting it. This necessity 
poses an interesting challenge for defining validation and 
verification requirements.

Digital twin of the  
test vehicle

Data mining, Analytics

Figure 1. Introducing Simcenter Prescan360.

Digital twin of the world  
1000’s of scenarios
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Formal verification approaches
There have been several accidents involving autonomous 
vehicles and concerns regarding their safety. This has 
underlined the importance of rigorous and more formal 
verification and validation of autonomous systems. Just 
simulating millions of miles is not adequate to provide 
enough confidence regarding the safety of autonomous 
vehicles. 

The broad process steps for autonomous vehicle  
validation and verification are:

1.  Establishing standards for requirements and  
specification documents

2.  Formalizing functional requirements and safety 
requirements

3.  Automatic translation of a simulation model to a  
formal model

4.  Temporal logic specification for formal description of 
the system requirements (the property to be checked)

5.  Execution of a model checker to ensure the formal 
model satisfies the properties and generates 
counterexamples 

Formal methods, especially model checking, have been 
used successfully in the area of software program verifica-
tion [2].  One possible way forward for verifying autono-
mous vehicles is to extend and adapt formal verification 
techniques for autonomous systems [3,4]. This involves 
two key challenges: formally modeling the requirements 

in an extension of temporal logic suitable for AVs such as 
metric temporal logic, signal temporal logic, spatial tem-
poral logic, timed temporal logic, etc., and deriving a 
formal automation of various simulation models such as 
environment models, vehicle models, etc.  

A complementary approach is to automatically generate 
edge test cases using standard optimization techniques 
(for example, stochastic optimization with adaptive 
restarts) guided by formal requirements in an appropriate 
temporal logic in order to find falsifying system behaviors 
[5].

A high-level sketch of how such formal approaches could 
be employed is shown in figure 2.

As shown in figure 2, the requirements, both internal and 
external, are defined in Polarion REQUIREMENTS. The 
formal model toolbox will translate the requirements 
defined in natural language to a signal temporal logic 
formula. Further, the temporal logic is translated to a 
constraint specification syntax understood by Simcenter 
Prescan360. The formal model receives the simulation 
output from Simcenter Prescan360 and provides a deci-
sion. The decision outcome from the formal model will 
lead towards either a) a successful verification, b) counter 
example generation or c) edge case generation. The 
counterexample and edge case scenarios are looped back 
to the simulation platform for further processing and 
validation purposes.

Figure 2. Process flow chart for formal elicitation and verification.
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Scenario modeling
As described in figure 3, the extensive in-traffic test 
requirements for AV can only be satisfied by simulation. 
Simulation software like Simcenter Prescan and Siemens’ 
Aimsun Auto can be used to simulate realistic road condi-
tions with many other vehicles (including AVs) and actors 
(like pedestrians) on different roads and in different 
environments to validate system performance and safety. 
Further, other solutions such as Waymo Carcraft, PTV 
Vissim and Caliper TransModeler can be interfaced with 
Simcenter Prescan and Aimsun Auto. The edge and corner 
test cases can be generated and validated. The robustness 
of the system performance can only be tested by simula-
tion since these edge and corner cases cannot be repro-
duced accurately in outdoor testing.

 Accidents happen on the road every day. These accident 
scenarios can provide a valuable source of edge-case 
scenarios. It is important to understand the reason for the 
accident so the system can be upgraded based on the 
experience. With simulation we can recreate accident 
scenarios. For example, accident databases like German 
In-Depth Accident Study (GIDAS) and China In-Depth 
Accident Study (CIDAS) contain accident descriptions that 
can be imported into Simcenter Prescan.

Vehicle modeling
Preliminary system design involving many subsystems 
generally starts with conceptual design followed by 
design of subsystems and integration. Simulation of 
systems is inevitable to avoid high redesign cost before 
prototyping. Integrating subsystems with different com-
plexity levels is needed in order to fine-tune and validate 
system parameters to meet the intended design require-
ments. Multi-physics system simulation software solu-
tions like Simcenter Amesim™ software and MATLAB’s 
Simulink environment can be exploited to get insights 
into the systems response before hardware is available.

Subsystems like sensors, actuators, etc., and the associ-
ated algorithms can be validated and verified with simula-
tion using hardware-in-the-loop (HiL), software-in-the-
loop (SiL) and model-in- the-loop (MiL). In this case, 
software like Simcenter Amesim and Simcenter Tyre 
software can be used. Scenarios in Simcenter Prescan can 
be looped in order to simulate and verify a variety of 
variants based on system parameters. For example, road-
to-tire friction for a specific circumstance can be validated 
by a high-fidelity simulation of a representative model.

Figure 3. Simcenter Prescan.

Figure 4. Simcenter Amesim.
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Smart testing scenario planning

Quantifying coverage metrics and defining the boundar-
ies for variable values sets the tone for smart test plan-
ning. Coverage metrics drawn from computer sampling 
can be employed; for example, to define the space filling 
of sampling, criterion based on inter sample electric force 
distribution, minimum/maximum distance, entropy, etc., 
are deployed for addressing the coverage quantification.

Smart test planning employs a machine-learning-based 
sampling algorithm with the ability to handle correlated 
inputs to generate the required feasibility samples. For 
example, the occurrence of the variable combination of 
“Snow Sleeting = heavy” and “Hot day temperature > 35 
C” is most unlikely and needs to be constrained while 
constructing a testing scenario, along with other actors 
(or variables).

In order to model such dynamic scenarios using simula-
tion tools, there are scene templates available in 
Simcenter Prescan. If there is a need for a detailed model 
to simulate behavior or response of the vehicle to the 
environment, actors or road conditions, an appropriate 
fidelity model in Simulink and Simcenter Amesim can be 
employed. At an abstract level, a physics-based empirical 
equation from first principles can be formulated in many 
contexts. One such elementary abstract example will be 
explained below.

The multi-fidelity, multidisciplinary and multi-objective 
process is constructed with HEEDS, which is a system-
level integration software/platform. This platform pro-
vides tools and algorithms for exploring the parameter 
space of interest. In special applications such as edge-case 
testing, smart design space exploration methods can 
consider intercorrelated input parameters, thereby arriv-
ing at feasible design parameter boundaries.

In an example scenario, consider a subject vehicle (SV) 
moving with y speed detecting a lead vehicle (LV) in front 
in the same lane. The SV is supposed to apply brakes or 
change lanes. The braking distance must be less than the 
safe stopping sight distance (SSD) and depends on the 
speed of the SV and LV. The braking distance is the sum 
of the reaction distance and stopping distances. The 
reaction distance is a function of reaction time. This reac-
tion time depends on road visibility and is influenced by 
weather and environmental conditions. Although the 
stopping distance is a function of speed, it is also 

influenced by tire-road interaction. The tire-road interac-
tion is modeled using a coefficient of friction that is 
dependent on whether the road surface is dry, wet, 
snowy, etc. Further, weather conditions significantly 
influence road visibility. Hence, it is important to consider 
the interdependency between input parameters during 
design exploration. Otherwise, the simulated scenario 
would result in infeasible/imaginary solutions.

Table 1 shows the variable definitions and values for the 
demonstration problem.

Variable –  
weather

Variable –  
friction coefficient

Variable –  
visibility

Dry (=> 0) 0.9 Normal (=> 1)

Fog (=> 1) 0.55 Less (=> 0.8)

Light rains (=> 2) 0.4 Low (=> 0.7)

Heavy rains (=> 3) 0.3 Very low (=> 0.6)

Snow/ heavy snow 
(=> 4)

0.2 Remote (=> 0.5)

Table 1. Variable definitions and values for assessing the safe braking 
distance.

Referring to table 1, it is evident that weather, friction 
coefficient and visibility forms the three variables and 
each of them assumes five discrete values. There are a 
total of 125 combinations of experimental designs (five 
levels for each variable with a total of three variables -> 
5^3 -> 125) that need to be simulated. However, the key 
question is whether some of the variable combinations 
are infeasible and does it warrant them being excluded 
from experimental screening? Experimental combinations 
“dry weather -> low friction coefficients -> high visibility.” 
“fog -> low friction coefficients -> high visibility,” “snow/ 
heavy snow condition -> high friction coefficients -> high 
visibility” are unlikely to occur and hence should be con-
sidered as infeasible from a simulation perspective. It is 
important to automatically identify such infeasible combi-
nations from the experimental setup so only the right and 
feasible testing scenarios are tested and simulated.
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4.  If weather is heavy rain, friction between 0.2, 0.4 and 
visibility around 0.6 (a scenario in which heavy rain 
conditions, lower traction and medium visibility are 
observed).

The smart sampling algorithm consumes these con-
straints and effectively generates the required number of 
feasible scenarios as shown in figure 6.

It is evident from figure 6 the smart sampling algorithm 
can identify the feasible design space accurately and the 
required number of feasible samples can get generated, 
satisfying the inter parameter constraints.

The smart sampling approach is valuable in an ADAS and 
AV controller validation and verification context but could 
be instrumental as well in the design stage of controllers. 
For example, Iterative Learning Control (ILC) techniques 
require system repeatability, that is, a system is required 
to follow an identical or similar trajectory. As depicted by 
S. Tong, during the development of ILC algorithms distur-
bances need to be added to grow robustness [6]. Having 
an automation environment like Simcenter Prescan360 
makes this process much more efficient.

Figure 5 shows the design space exploration for 100 
samples for methods without constraint pruning. The 
feasible design space is a small fraction of the complete 
space; hence, a randomized sampling followed by con-
straint pruning will make it difficult to identify the feasible 
design space boundary.

 To perform efficient sampling in constrained spaces, a 
proprietary algorithm integrated in HEEDS for the test 
automation with a capability of constraint pruning on 
input parameters is employed in the demonstration 
example. 

To satisfy feasibility conditions, the constraints are formu-
lated as follows in the machine-learning-enabled smart 
sampling approach:

1.  If weather is fog, friction > 0.5 and visibility < 0.2 (a 
scenario in which foggy conditions, better traction and 
low visibility are observed).

2.  If weather is dry, friction > 0.5 and visibility > 0.8 (a 
scenario in which dry conditions, better traction and 
high visibility are observed).

3.  If weather is snow/heavy snow, friction <= 0.2 and 
visibility around 0.5 (a scenario in which snow condi-
tions, least traction and medium visibility are 
observed).

Figure 5. Design space exploration without constraint 
pruning.

Figure 6. Design space exploration with smart sampling.
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Behavioral modeling of agents

As has been mentioned, at the highest level of automa-
tion, the autonomous vehicle is expected to perform the 
driving tasks of an alert and nonaggressive driver. There is 
an increased interest in the automobile community to 
model the behaviors of agents using artificial intelligence 
(AI). There are several approaches to adding intelligence 
to a process, function or agent in an algorithm. In auto-
motive engineering, Bayesian intelligence offers the 
promise of enabling the system to learn, adapt and 
improve and thereby to become human-like. 

Beyond discrete testing methods, probabilistic modeling 
with a Bayesian approach that predicts the probability of 
events given a scenario can be employed. An instance of 
employing Bayesian rules for modeling the functions of 
car-following and lane-change models is described. The 
Bayesian methodology has been used successfully as the 
foundation for system design and decision analysis in 
challenging situations in which uncertain states of nature 
are encountered and learning opportunities are available 
to refine knowledge of uncertain factors. Bayesian AI can 
play the following role in the context of car-following and 
lane-change scenarios:

1.  To complement or replace the human driver, Bayesian 
AI must reason in spite of uncertainties in the driving 
environment.

2.  In the driver assistance role, AI will need to reason 
whether the driver is alert and is driving in a nonag-
gressive manner. If not, AI is in charge in the auto-
mated mode and the driver is not in the loop, so AI has 
to process available data/information, estimate prob-
abilities and identify the most favorable decision in 
driving.

3.  The Bayesian AI can update probabilities and wait for 
new information to become available for modifying 
probabilities to decide. That means we should be able 
to blend old information with new information with 
Bayesian math, enabling decision-making in a dynamic 
and uncertain driving environment.

Some of the scenario examples that can be answered by 
probabilistic modeling of events are: 

1.  What is the probability of a frontal crash given the 
leading vehicle suddenly applies the brakes and the 
follower vehicle takes time to respond to the event?

2.  What is the risk of a lateral crash if a leading vehicle 
accepts a lane change (lane 1 -> lane 2) while the 
following vehicle, which is moving at a higher speed in 
lane 2, takes time to respond to the event before 
braking?
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Reliability and security modeling

This section provides a description of defining metrics for 
AV robustness and process to ensure the trustworthiness 
of AV.

One way to provide robustness guarantees is with the 
issuance of partial certificates (called µ certificates from 
here on) for functionality in which there is a high degree 
of confidence. It is also possible to have a hierarchy of 
certificates like the SAE Autonomous Driving Levels indi-
cating the level of trust and reliability in the system being 
tested. 

The mission of autonomous vehicles is to navigate safely, 
securely and reliably from an origin to a destination, 
which are chosen by the user. In order to fulfill the mis-
sion, navigation decisions are automated by acquiring 
four classes of information, namely: (a) environmental 
perception information from perception sensors such as 
camera, radar and lidar, (b) relative location information 
from machine-to-machine communication sensors such 
as Global Positioning System (GPS), vehicle-to-vehicle 
(V2V) communications and vehicle-to-infrastructure (V2I) 
communications, (c) path planning information from 
networked services such as Google Maps or other map-
ping services and (d) synchronization information from 
networked services like Network Time Protocol and 
Precision Time Protocol. Autonomous vehicle decision 
subsystems must be used to fuse the four classes of 
acquired information in real-time in order to generate 
driving instructions for the vehicle control system. 

The mission of autonomous vehicles could be jeopardized 
by falsifying or denying the four classes of information. 
Environmental perception information can be falsified or 
delayed (denied) by jamming the corresponding sensors. 
Petit [7] provides a detailed account on how lidar and 
camera sensors can be jammed.  Similarly, relative loca-
tion information can also be falsified or delayed (denied) 
by spoofing attacks [8,9]. Path planning information can 
be made unavailable by jamming telecommunication 
signals used by the autonomous vehicle to consume 
information from remote services. Attacks on synchroni-
zation [10,11] can attack safety-critical coordination 
functions. 

In order to gain confidence about the safety, security and 
reliability of autonomous vehicles, the safety and liveness 
properties of the distributed system [12, chapter 7], of 
which the autonomous vehicle is a part, needs to be 
established. Modeling and simulation provides efficient 
techniques for proving the safety and liveness properties 
in (a) normal operations – liveness, (b) operations when 
some components are faulty – reliable safety and (c) 
operations in the presence of adversarial actions – secure 
safety. 

In order to realize safety in a secure manner, adversarial 
actions need to be modeled so the resultant simulation 
can help in discovering the consequence of falsifying or 
denying any of the four classes of information to autono-
mous vehicles.  There are two approaches to simulating 
cybersecurity, namely design simulation and operations 
simulation. 

In design simulation, adversarial actions are modeled as 
discrete events for corrupting the four classes of informa-
tion available to autonomous vehicles. Any discrete event 
simulation tool that can interface with the autonomous 
driving system simulation can be used. The consequence 
of such adversarial actions can be explored by simulating 
the model. Design simulation is useful for creating robust 
design specifications and security certification. For exam-
ple, the NS3 network simulator [13] can be used to simu-
late attacks on relative location, path planning and 
synchronization. 

Operations tend to be HiL simulations that aim to subject 
an embedded system to adversarial actions while contain-
ing the adversarial actions in a sandbox. Such simulations 
are useful for operations design and training purposes. 
The SANS Netwars simulator [14] is an example for this 
approach. 

Cyber-physical system simulation for autonomous vehi-
cles would include the use of an array of simulation tools 
and techniques. It will encompass the development, 
testing and marketing of a new class of simulation prod-
ucts to assist in the secure design and development of 
components, subsystems and systems for autonomous 
vehicles.
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The introduction of Simcenter Prescan360 for massive 
virtual validation and verification of ADAS and AV technol-
ogy not only marks the launch of an off-the-shelf engi-
neering environment for autonomous vehicles. Perhaps 
even more importantly, it is the starting point for includ-
ing a smart approach. The step from testing large num-
bers of miles to coverage-driven validation and verifica-
tion can now be set. 

Conclusion
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