
Executive summary
Automotive embedded software complexity is ballooning as software
applications play a critical role in delivering the features and functionality
demanded in modern vehicles. The growing importance of software is also
increasing the complexity of the interactions between hardware, software,
and physical systems. Current software development methodologies are
incapable of managing the numerous and intricate cyber-physical inter-
faces in the cars of today. To compete, companies must evolve their soft-
ware development processes to establish a common digital thread con-
necting software and physical systems development.

Piyush Karkare
Director Global – Automotive Industry Solutions

Siemens Digital Industries Software

siemens.com/plm

Creating a unified
platform for automotive
embedded application
development

White paper | Creating a Unified Platform for Automotive Embedded Application Development

2Siemens Digital Industries Software

Contents

Challenges and the feature-centric approach 4

The unified platform for automotive
embedded software development 6

The three processes of embedded
software development ... 7
Application definition and planning 8
Application development and quality assurance 8
Application delivery and monitoring 8

Example application development flow 11

Unifying automotive embedded
software development ... 13

White paper | Creating a Unified Platform for Automotive Embedded Application Development

3Siemens Digital Industries Software

The modern car is a complex system of powerful comput-
ing units, sensors, actuators, and mechanical and mecha-
tronic systems. Today, more and more vehicle functions
and features are being achieved electronically. Users
expect a seamless and intuitive experience while using
and enjoying the many exciting features offered on mod-
ern vehicles (figure 1). This trend is making the software
that manages these vehicle systems of much greater
consequence. In addition, software is crucial for compa-
nies hoping to capitalize on the promise of connected,
electrified, and autonomous vehicles. The result is a
marked increase in the sophistication and complexity of
in-vehicle software, and thus the challenge of developing,
verifying, and validating such software.

Product engineering and software engineering follow
inherently different development lifecycles. Engineers
manage software development separately and typically
only validate the software-hardware interface at pre-
defined checkpoints. However, the rising intelligence and
connectivity of vehicles are making the interactions
between software and physical systems more complex,

exposing the deficiencies of current processes, tools and
methods. Software development work completed inde-
pendent of the holistic vehicle system context increases
the occurrence of problems with hardware compatibility,
software quality, and program accountability.

To compete in the technological race for the future of
mobility, companies must evolve their software develop-
ment processes today. A common digital thread connect-
ing software and physical systems together is the only
way to take control of the increasing complexity of smart
and connected products. This will enable a closed-loop
behavioral representation of a vehicle’s software and
hardware systems for continuous validation throughout
the product lifecycle. A robust digital thread will help
engineers ensure that software features are fully compat-
ible with the vehicle in which they are deployed and
complete with evidence showing that all related tasks and
deliverables are available on time. The digital thread will
also track accountability for changes regarding not just
who, but how and why.

Figure 1: Modern consumers expect a seamless user experience in vehicles, self-driving or not.

White paper | Creating a Unified Platform for Automotive Embedded Application Development

4Siemens Digital Industries Software

Challenges and the feature-centric
approach

In-vehicle software development is a complex environ-
ment involving multiple domains across several organiza-
tions all working to implement a common set of vehicle
features (figure 2). These software features evolve from
requirements defined by vehicle or platform-level interac-
tions. They are then refined with the needed electrical
connectivity and network communication.

When designing and building applications, it is easy to
forget that each application is part of a bigger system.
Applications call on individual vehicle functions to per-
form some task that is then used to enable one or many
vehicle features. Just as an application may help enable
multiple vehicle features, any single vehicle feature may
call on several applications across different ECUs.

In this case, the lane-keep-assist software feature must
interact with sensors, multiple processors, steering actua-
tors, and inform the driver about the actions being taken.
The requirements for each embedded software applica-
tion ultimately are derived from the vehicle-level system
design and development process. This is the system con-
text for the embedded software application. It is essential
that the system context is considered across entire
embedded software application development process.

Original equipment manufacturers (OEMs) typically deal
with the entire vehicle-level software feature develop-
ment. Much of the detailed control algorithm and embed-
ded software application development is done at the
supplier-level, although OEMs are beginning to bring

Figure 2: Automotive embedded software development is a highly complex task that involves many organizations across varying engi-
neering domains.

White paper | Creating a Unified Platform for Automotive Embedded Application Development

5Siemens Digital Industries Software

critical feature development, such as infotainment, ADAS,
and powertrain features, in house due to extreme compe-
tition in these areas.

Control algorithms are needed for these software features
and functions to verify and validate the desired function-
ality. The control algorithms boil down to specific func-
tional behaviors and interactions across software compo-
nents that are implemented in electronic control units
(ECUs). These components are compiled into a software
application that contributes to the cyber-physical system
that implements the vehicle feature. Typically, software
applications are compatible across all vehicles that share a
common platform.

Complicating the implementation and operation, each
supplier is responsible only for their own content, not the
overall feature or features their ECU content would poten-
tially support. Engineering organizations at both suppliers
and OEMS tend to take an ECU (hardware) centric
approach – focusing less on the feature that is being
implemented. In such approaches, ensuring the software
feature can be verified and validated continuously as
various software and hardware components reach matu-
rity is a very challenging and time-consuming process.
Engineers often uncover feature-level bugs late in the
process due to delaying verification and validation. This
causes costly late-stage changes, reduced testing time,
and delayed product or feature release. As the complexity
and number of distributed features increases, the prob-
ability of not finding issues, or finding them too late,
increases tremendously.

A feature-centric software definition approach can help
organize the chaos of automotive embedded software
definition. A feature-centric and architecture-driven
approach allows systems engineers to focus on defining
and managing the functional decomposition of software
features (feature architecture) and allocating or re-using
software components to logical electrical components like
ECUs, switches, actuators, and more (logical architec-
ture). Electrical connectivity, power-distribution, ground-
ing, and fusing can now be optimized based on the soft-
ware feature needs (electrical architecture). Network
communications can also be optimized and secured (net-
work architecture).

As the vehicle programs ramp up, existing hardware-soft-
ware relationships between software functions and logi-
cal electrical components will identify each of the electri-
cal components that are necessary for each vehicle
feature. Logical components can then be assigned to
physical part-numbers tracked within the particular vehi-
cle program, providing end-to-end traceability of how the
software features are engineered and used by each vehi-
cle program (physical architecture). Keeping track of all
the activities at OEM or suppliers becomes a challenging
and relentless mission. Enabling effective collaboration
across these activities will help engineers deliver compat-
ible, complete, and accountable software features to the
vehicles.

White paper | Creating a Unified Platform for Automotive Embedded Application Development

6Siemens Digital Industries Software

Effectively implementing a feature-centric approach
requires a robust, secure, and widely accessible method-
ology to design, create, track and improve the complex
software features that are distributed across a multitude
of in-vehicle ECUs and often sourced across the globe
from many suppliers.

Achieving such a methodology requires a unified platform
for embedded software development to coordinate all the
activities across a diverse tool-set to deliver a fully verified
and validated build under hardware and system configu-
ration constraints (figure 3). With such a platform, OEMs
and suppliers can consolidate data-flows across the tool-
chain eco-system and synergize to optimize process,
methods, and tools integrations.

A unified platform that orchestrates all activities across
the embedded software application definition, planning,
development and delivery lifecycle, while also connecting
with varied toolsets, will facilitate organic collaboration
among many engineers, ensure traceability, and promote
the re-use of available data.

A unified platform for automotive
embedded software development

Figure 3: A unified platform for automotive embedded software development is needed to deliver verified and validated application
builds based on hardware and system constraints.

White paper | Creating a Unified Platform for Automotive Embedded Application Development

7Siemens Digital Industries Software

The three processes of embedded
software development

The orchestration of automotive embedded software
application development can be divided into three seg-
ments (figure 4):

• Application definition and planning
• Application development and quality assurance
• Application delivery and monitoring

The key is to continuously ensure overall consistency and
compatibility between the work that various stakeholders
are performing across many platforms and organizations.
A unified software development platform helps compa-
nies to orchestrate each of these processes, and the
activities therein, with a single digital thread. Then, indi-
vidual organizations can use AGILE or other methodolo-
gies to deliver robust embedded software applications on
budget and on time.

Figure 4: The three segments of feature-centric automotive embedded application development

Embedded application
Development and QA

Embedded application
Delivery and monitoring

Embedded application
Definition and planning

White paper | Creating a Unified Platform for Automotive Embedded Application Development

8Siemens Digital Industries Software

Application definition and panning
Polarion, as the advanced software development coordi-
nation tool, can consume and track the system-level
product definition to create a direct link between system-
level changes and application development, ensuring the
project and the overall system stay in sync. The system, in
this case, is a generalization of the vehicle-level feature
abstraction.

The system-level definitions and hardware constraints are
codified into system-level requirements and specifica-
tions. Software engineers can then decompose the
needed mix of hardware and software requirements,
noise factors, failure modes and effects analyses (FMEAs),
test-cases, goals and begin embedded software applica-
tion-level definitions and planning. During planning,
software teams can assign tasks for modeling, coding,
test-execution, build production, and more across the
needed toolsets. At any given time, software engineers
can peek into the system-level definitions and constraints
and collaborate with other system users, or be notified if
there are system-level changes to evaluate software-level
impacts.

The creation of, and any subsequent changes to, detailed
software requirements will trigger software architecture
and modeling changes. With the requirements, software
engineers can update these models to align with control
algorithms. Software engineers now execute detailed
model-in-the-loop (MiL) tests to verify and validate that
desired outcomes are achieved at the application and
system-level before any code-level changes are triggered.
This allows engineers to discover critical risks, issues and
defects while staying aligned with system-level directives
early in the process.

Application development and quality assurance
The software component architecture and modelling
tasks verify and validate that component interactions
achieve the desired functionality. As models get more
robust and complete with verification and validation,
code changes and updates can be completed and tested
with software-in-the-loop (SiL) and further down with
hardware-in-the-loop (HiL) testing. Engineers can then
perform vehicle modeling-level updates and test again to
ensure consistency, compatibility and overall accountabil-
ity with needed reports and audit trails at the vehicle
feature-level.

This model-based approach not only speeds up the pro-
cess but can also instill methods such as SOTIF (Safety Of
The Intended Functionality), ensuring that the software is
working as intended, and hazards and unintended func-
tionality are prevented by-design. Incorporating SOTIF
methods complements standard functional safety and
systems theoretic process analysis (STPA) approaches that
mitigate risks by employing safety goals that assume
faults will occur. This combination produces exceptionally
robust automotive embedded software applications. This
also allows the engineers to link standard process descrip-
tions and required work-products in the unified software
environment. This enables the engineers to focus on
engineering tasks while the tool manages the process
adherence, traceability, consistency, collaboration, and
lifecycle of the data created.

Application delivery and monitoring
Finally, the embedded application must be delivered to
the software assembly that will be included in the final
vehicle bill of materials (BoM). But first, engineers must
prepare the application for delivery and establish infra-
structure to monitor the application after it is delivered.
This includes constant monitoring of how and where the
application is being used in the vehicle architecture.

Throughout the application development, delivery, and
monitoring, the software development platform solution
can connect with various tools to provide code perfor-
mance, test coverage data, and to ensure alignment with

White paper | Creating a Unified Platform for Automotive Embedded Application Development

9Siemens Digital Industries Software

methods and coding standards such as MISRA-C. Further,
the unified software development environment supports
the collaboration and coordination needed to apply
appropriate updates to the code and facilitate the neces-
sary quality assurance processes.

Eventually the application must be verified and validated
with virtual and physical hardware, and other peripherals
to ensure the desired functionality is achieved and that
the system will perform safely. This ensures the embed-
ded software application is complete, compatible and
meets the vehicle system-level requirements and needs.

The software engineers must ensure that each software
build is delivered to the correct vehicle variant structure.
Vehicle platforms spawn dozens of discreet vehicle

variants with a mix of shared and unique features, com-
ponents, and embedded hardware. The software domain
has to configure builds to match each of these variants,
which quickly becomes very complex. Software engineers
must ensure that the software being delivered to each
vehicle is fully compatible with the hardware in that
vehicle variant. This is typically accomplished by packag-
ing the software configuration, calibration, and boot-
loaders that coincide with each ECU in the vehicle struc-
ture as a software assembly for delivery. This is especially
important when updating customer vehicles in the field
(figure 5).

Figure 5: Vehicle features, vehicle build variance and management of application builds with configurations.

White paper | Creating a Unified Platform for Automotive Embedded Application Development

10Siemens Digital Industries Software

Another key element to automotive embedded software
is application configuration management. Software appli-
cation design is becoming less dependent on the hard-
ware on which the application will run as companies
begin to develop embedded operating systems. This is
analogous to smart phone applications and operating
systems. Application compatibility is based primarily on
the operating system, rather than the hardware. As a
result, it is becoming very challenging to manage the
compatibility between automotive embedded software
applications and the embedded system-level software
(real-time operating system, base software, and etc.),
underlying hardware variants, and vehicle variants (figure 6).

A robust combination of application lifecycle manage-
ment (ALM) and product lifecycle management (PLM) is
critical to manage this complexity. A unified hardware-
software platform allows the OEM to build and support
the basic processes and infrastructure for “As-Designed”
(for development), “As-Released” (for engineering),
“As-Built” (for vehicle assembly plants), and “As-Serviced”
(for over-the-air and dealership updates) software builds.

Figure 6: Automotive embedded application configuration management becomes more challenging as software becomes less dependent
on hardware, similar to the smartphone application ecosystem.

White paper | Creating a Unified Platform for Automotive Embedded Application Development

11Siemens Digital Industries Software

Example application development flow

This example walks through the development of a new
application for a specific ECU, in this case the adaptive
cruise control module (ACCM), using a Polarion-based
platform for software development (figure 7). A system-
level change of combining two features – automatic
emergency braking (AEB) and adaptive cruise control
(ACC) – has been developed at the system-level abstrac-
tion. First, these new system requirements and specifica-
tion must be cascaded to the ACCM and all affected
sub-systems.

This is going to require significant software changes to
the ACCM, in addition to non-software changes outside
of the ACCM as peripherals will also be impacted. The
changes to the ACCM may include new system require-
ments, hardware specs, FMEAs, safety requirements and
more. ACCM software engineers must stay continuously

in touch with the system context as they make the
needed changes and updates to the ACCM software.
Connecting the software development orchestration tool
with product lifecycle management (PLM) solutions facili-
tates this continuous connection between teams and
abstractions, especially with the software platform con-
trolling change management and PLM managing activities
at the feature-level.

As part of a sprint, based on the system-level changes,
ACCM engineers can implement the necessary changes
and updates to software-specific requirements, test cases,
test methods, and more. Work items that might be
impacted by these changes, based on the existing data
artifacts in the software management tool, can be flagged
for further review before changes are committed. Most of
the work items would have been flagged already for this

Figure 7: An example application development flow demonstrates the utility of a unified software development platform.

White paper | Creating a Unified Platform for Automotive Embedded Application Development

12Siemens Digital Industries Software

change as part of the engineering change request (ECR)
for the AEB+ACC update. This way, the PLM and software
development coordination solutions will maintain consis-
tent data for on-going change management.

AGILE processes can proceed with the system-level
changes and ensuing updates to software requirements
will trigger potential updates to the software component
architecture and models in Embedded Software Designer
or MATLAB/Simulink. The unified software development
platform can orchestrate and flag the suspected models
for changes as these changes cascade and decompose
down from the system-level. As these software compo-
nent architecture-level and model-level changes are
executed (along with electrical systems and CAN bus
network communication changes imported from the
electrical systems tool), ESD can export models for Matlab
and C languages for model-in-the-loop (MiL) test execu-
tions. Depending on the level and amount of changes,
preliminary SiL testing can also be initiated to validate the
functional interfaces based on the updated architecture
before any changes are applied to the code.

Once the functional interfaces are verified and validated,
software engineers can begin sprints for implementing
code changes. These code changes can be tied back to
the source requirements, from step two, and architectural
changes. This ensures that changes are accurate and have
full traceability to the system-level requirements, or even
further back. For example, a marketing-level directive or a
warrantee based change coming in from the field to fix a

re-occurring issue on customer vehicles. This bottom up
traceability is extremely beneficial as it can assess wider
cross-vehicle program changes and fix or update function-
ality with one update, instead of many, saving consider-
able cost.

As part of the AGILE sprints, updated code can then be
tested through SiL on virtual hardware, or via hardware-
in-loop with physical hardware. This testing triggered
with AGILE methods facilitate continuous integration with
software builds and hardware or system-level constraints.
The software development platform can also manage and
execute hardware-software system-level tests for which
these code changes are being made available. Then,
overall test results and project dashboards can help engi-
neers check that a robust, verified and validated software
application is now available for deployment.

Then, the final software assembly for the “As-Released”
BoM can be updated using the engineering change notifi-
cation (ECN) that was triggered from the PLM tool. The
ECN targets the specific ECU part number in the config-
ured vehicle structure. This ensures that an up-to-date
software assembly is ready for configuration to be
included in the final vehicle assembly. This is then sent to
vehicle assembly plants for dealerships for ECU flashing.

White paper | Creating a Unified Platform for Automotive Embedded Application Development

13Siemens Digital Industries Software

Unifying automotive embedded
software development

Integrating the software and product development eco-
systems by connecting the relevant architecture defini-
tion, modeling, and testing tools creates a unified plat-
form for automotive embedded software engineering.
This platform acts as a collaborative environment that
provides traceability and incentivizes IP reuse. This
reduces development time and cost by detecting incom-
patibilities early in the process. As a result, engineers can
build a robust, safe and secure product without excessive
iterations.

A unified automotive embedded software platform is
fundamental to the coordination of complex software
application development because it supports real-time
and on-demand access to design data, requirements, test

results, and much more directly in the engineering view.
Such a platform also contributes to a strong digital thread
and makes collaboration between disparate teams and
organizations organic and intuitive, boosting the produc-
tivity of each stakeholder.

Furthermore, solutions such as Polarion facilitate rapid
application deployments by offering templates for
Enterprise AGILE, SAFe and other large-scale implementa-
tions along with templates for standard compliance such
as ISO 26262, A-SPICE, CMMI, and more. These templates
are adaptable to customer-specific processes, easing user
adoption and accelerating return on investment (figure 8).

Figure 8: A unified embedded software development platform enables collaboration and reuse while ensuring traceability, interoperability,
and compliance. Standard templates help deliver accelerated return on investment and development time.

White paper | Creating a Unified Platform for Automotive Embedded Application Development

14Siemens Digital Industries Software

OEMs and suppliers alike demand for rapid return on
investment from these complex engineering environ-
ments where they can reduce engineering costs and
increase efficiency. A unified software development
orchestration platform provides collaboration agility with
a configurable environment, making it easier and more
cost effective to change agile workflows. The environ-
ment promotes reuse as companies leverage proven
components to produce variations faster, enabling more
differentiated products, and higher returns. Furthermore,
these tools provide much-needed traceability for audits,
research, and reviews, while saving resources, time, and
related costs. Engineers are then able to focus on engi-
neering tasks while the tools track work-products.

In-vehicle software is becoming more and more impor-
tant to the competitive strength of vehicles in a cluttered
and contentious market. Exciting and useful electronic
features, such as ADAS and advanced infotainment sys-
tems, use increasingly sophisticated software to deliver
the functionality and features that matter to modern
consumers. To beat market competition, manufacturers
will push to meet ever-tightening timelines.

Simultaneously, the expectation for software quality and
reliability will surge. System lag, glitches, and poor user
interface design will be judged much more harshly as
they become more central to the users’ interactions with
the vehicle. In this new environment, a unified and collab-
orative environment for SW development that builds-in
traceability and IP reuse will prove invaluable.

Siemens Digital Industries Software

Headquarters
Granite Park One
5800 Granite Parkway
Suite 600
Plano, TX 75024
USA
+1 972 987 3000

Americas
Granite Park One
5800 Granite Parkway
Suite 600
Plano, TX 75024
USA
+1 314 264 8499

Europe
Stephenson House
Sir William Siemens Square
Frimley, Camberley
Surrey, GU16 8QD
+44 (0) 1276 413200

Asia-Pacific
Unit 901-902, 9/F
Tower B, Manulife Financial Centre
223-231 Wai Yip Street, Kwun Tong
Kowloon, Hong Kong
+852 2230 3333

siemens.com/plm
© 2019 Siemens. A list of relevant Siemens trademarks can be found here. Other trademarks belong to their respective owners.
78394-C6 8/19 A

About Siemens Digital Industries Software
Siemens Digital Industries Software, a business unit of
Siemens Digital Industries, is a leading global provider of
software solutions to drive the digital transformation of
industry, creating new opportunities for manufacturers to
realize innovation. With headquarters in Plano, Texas, and
over 140,000 customers worldwide, we work with com-
panies of all sizes to transform the way ideas come to life,
the way products are realized, and the way products and
assets in operation are used and understood. For more
information on our products and services, visit siemens.
com/plm.

15

http://www.siemens.com/plm
https://www.plm.automation.siemens.com/global/en/legal/trademarks.html

