

Electronics Manufacturing Break-out Session – Closed Loop Manufacturing

© Siemens 2020

Realize innovation.

Presenters

Sagi Reuven Mentor – Siemens DISW Business Development Valor | MOM | Electronics

Lean Digital Roadmap of DI Frank Bleisteiner – Senior Director Production Engineering – DI FA MF

© Siemens AG 2019

- Part

siemens.com

ctory

Siemens DI factories strengthen the focus on automation & digitalization hand in hand with lean productivity

Restricted © Siemens 2019

Pilots should be fresh topics using new technology, which are easily scalable and bring measurable value to the organization

Digitalization pilot criteria, working principles

SIEMENS

Ingenuity for life

Industry 4.0 - How we Transform a Buzz-word into Manufacturing Excellence in Electronics

"More than <u>50%</u> of companies that attempt to move to a digital model will <u>fail</u>."

Source: John Chambers, McKinsey & Company Report March 2016

Restricted © Siemens 2019

Page 7

Siemens Digital Industries Software

Trends and challenges driving MES implementation in Electronics industry

Technological Forces Transforming Industry

Changing the way products come to life

Changing the way products are realized

Changing the way products evolve

Trends like Industry 4.0 Provide a Framework for Addressing the Challenges of Modern Manufacturing.

But how do you implement them?

Innovation

Excellence

Digitalization

SENIOR EXECUTIVE VIEWS ON DIGITALIZATION

"Digitalization success depends less on having the most advanced technologies and more on having the right operating systems." CEB GLOBAL, 2017

PRODUCT	PROCESS	ASSETS AND MATERIALS	QUALITY
Time to market Quality	Setup time Work instructions	Equipment utilization OEE, ROA, inventory turnover, waste	Online Process Interlocking
Chinese Telecom Factory +25% Units shipped	Japanese Automotive Company +\$1.4M Annual savings	Chinese Telecom Factory +100% Operator efficiency	<section-header><section-header><section-header></section-header></section-header></section-header>

Restricted © Siemens 2019

PERFORMANCE	PROCESS MONITORING	FINDING BOTTLENECKS	BOXBUILD
Global Decision Making	Changeover Optimization Guided Shop floor Operations	Drill Down to the Details	Manage Guided Assembly & Test
Automotive FTS $60\% \rightarrow 52\%$ OEE \rightarrow LIVE OEE	Top 50 Global EMS 29k Components 37k Components 42k Components 50k is the max!	Top 50 Global EMS Waiting 60 hours monthly for the reflow oven! 60 Hrs Added another oven instead of another line	European EMS 1,410 DPMO

Providing both Data solutions and Enterprise MES

Restricted © Siemens 2019

Streamline PLM

Lean Digital Factory (LDF) modules

Restricted © Siemens 2019

Page 15

Siemens Digital Industries Software

SPLM Mapping of PoCs to Digital Twin Approach

Restricted © Siemens 2019

Workflow

Ref Process: NPI = New Product Introduction

Ref Process: NMI = New Machine Introduction

Restricted © Siemens 2019

Workflow PoC supports the NPI¹/NMI²) reference processes (NPI: 2000/year @ EWA; 600/month @ WKC)

Evaluation of a workflow engine

PoC extension

requested

PoC

completed

...

Detail view: Reference process product introduction – Part 1/2

Workflow

π

Siemens Digital Industries Software

The PoCs digital twin product and DI-wide resource library resulted in a standard definition and thus reusability for DI

Resource Library

Levels of detail fulfille	ed by digital twin		
Basic Info Name and type of an asset classified according to potential use cases (e.g., production, assembly, logistic,)		LoD 01	
Supporting Pre-Planning phase as well as implementation Descr. of essential asset capabilities (PMI), all relevant data	on and executing of SPLM for factory planning & execution process	LoD 02	
Basis for 2D-Layout planning and material flow analytics Factory planning, sensible 2D layout incl. all functional areas and relevant operation pages (operating page, material delivery/flow, maintenance access,)			
Enabling for realistic rough layout planning Simplified 3D model (boundary view) with enveloping contours and provision in typ. exchange and planning file formats (e.g., JT)			
Supporting workstation or work-cell design and detail layout of the factory 3D model based on NX incl. kinematic axes (if relevant for subsequent use in corresponding planning tools); NX assembly of complex parts (single resources) for integr. into combined plant project planning			
Implementation planning and physical simulation evaluation (if needed) Native 3D design model incl. all material types and surface properties for simulation of physical, electrical and so on properties (e.g., FEM, thermo,)			
Execution phase based on specific simulation and virtual commissioning Mechatronic System/Cyber-physical model including all electrical capabilities for virtual commissioning, programming and simulation			
Closed loop with life cycle data from operating phase Aggregated process and event data from MindSphere applic planning phase or scenario validation/simulation	cations and microservices for reuse in next	LoD 08	
🛸 eCl@ss*	PI0674 – Introduction of	system	
ked to standard	Linked to sup	plier	

Linked to the reference process

Restricted © Siemens 2019

Norkflow (H

Work Based Interaction with Robotics

Fraunhofer IWU, Chemnitz © **Classical/LWR** 0 versus Collaborative Koexistenz Kollaboration Kooperation No Interaction **Standard robot carrier** Classical/Light Weight Collaborative system **Increase efficiency** Improve ergonomic High flexible High tact time ROI < 2a

SIMOVE is evaluated as Master Controller for Autonomous Mobile Robots (AMR) and forklifts

A unified control system for transport order assignment is needed

* Verband der Automobilindustrie | ** STÄUBLI WFT GmbH

Siemens Digital Industries Software

Closed-Loop Manufacturing – OpCenter Execution Electronics

The most frequent use cases for CLM

Data Acquisition \rightarrow Analysis \rightarrow Insights \rightarrow Action

Restricted © Siemens 2019

Data Acquisition \rightarrow Analysis \rightarrow Insights \rightarrow Action

Restricted © Siemens 2019

Siemens Digital Industries Software

Data Acquisition \rightarrow Analysis \rightarrow Insights \rightarrow Action

"In the product, the value of the raw material is 80%, but then you have scrap and inventory failure, and that can kill your profit! The material must be under control"

> Franco Oliaro ROJ CEO

Challenge

Material Overspend

Inefficient flow of materials and missing real-time visibility of material quantity across the factory leads to inflated inventory spend, material obsolescence, poor production efficiency and waste of shop-floor space

SOLUTION

Aggregate data from manufacturing lines, kitting stations and warehouse, to generate prescriptive model of material flow

RESULTS

obsolescence

Production
<u>efficiency increase</u>

Closed-Loop Feedback from Manufacturing to Design via Manufacturing Execution System (<u>Available Today</u>)

SIEMENS Ingenuity for life

Collaborative interaction among Design, **Engineering and** Execution domains based on seamless integration

Restricted © Siemens 2019

Machine-to-Machine Closed-Loop Feedback (POC)

Automatically trigger equipment maintenance based on realtime quality metrics

Restricted © Siemens 2019

Use Case Vacuum Gripper

Stabilization of packing machine by online monitoring of vacuum grippers

Challenge

Regular contamination of vacuum system due to heavy dust

Aggregation of process data without re-programming the PLC or intervention in the running process

Splitting real time data for PLC and maintenance information for IT

Solution

Easy integration of a Schmalzspecific condition monitoring in machine HMI and notification when to clean the filter

Utilization of the Schmalz EPC App with additional services

Scalable Plug&Play Connectivity

Use Case Milling spindle

Predictive Maintenance for depaneling machines

Objective: Milling spindle in a printed circuit board depaneling machine Problem: Aggressive milling dust causes stiffness, which leads to machine failure

SIEMENS Ingenuity for life Heavy anomaly damage detected nomaly scol 2 days

> Target and approach: Detect critical condition via current- and rpm analysis

Edge app predicts downtime
 Cloud for alert & dashboard

Best results by combining different analytic methods

The algorithm detects downtimes up to 2 days in advance!

Restricted © Siemens 2019

CHALLENGE

Using X-Ray test on every PCB is slow, expensive and reduces overall line performance

Solder paste

Root-cause for 60% of PCB Assembly issues

Solder Paste Inspection

collects data about the applied solder paste

X-Ray Inspection

- Checks quality of solder joints after soldering
- Slow and expensive
- Potential process bottleneck

SOLUTION

Use solder paste inspection data to predict the need for X-Ray inspection of each PCB

RESULTS

30% Reduced x-ray testing volume

10% Improved line utilization

Collect solder paste and X-Ray inspection measurements and pass / fail data

Supervised machine learning algorithms – Determine which PCB can skip X-Ray inspection

Continuously re-train the machine model to increase prediction accuracy

Data Acquisition \rightarrow Analysis \rightarrow Insights \rightarrow Call to Action

What is your vision? We can do it together

Thanks; TackFrank BleisteinerSDI FA MFGV

Sagi Reuven Valor BD

Twitter: #beitgugb

www.siemens.com