
DIGITAL INDUSTRIES SOFTWARE

Agile, software requirements
management and regulatory
compliance: a practical Live approach

Executive summary
Agile methods have proven their ability to improve project success rates, but there is still
some pretty wild, yet-to-be explored territory. For example: how can you support information
traceability from software requirements elicitation onward while managing risk of
noncompliance to industry standards and regulatory mandates using Agile? This paper
presents the Live approach and discusses how the adoption and refinement of Agile methods
are able to significantly reduce risk of project failure and increase efficiencies of regulatory
compliance.

siemens.com/software

Contents

Introduction...3-4

Value propositions of Agile principles.................................5

Most common Agile methods...6

Staying Agile: is it possible?..7
The agile conundrum: requirements and governance versus
development..8

Software development tools: state of the art.....................9
The “bad old days”: disparate tools and data...........................9
Today’s state-of-the-art tools proposition...............................9
The new breed of ALM..10

Integrating Agile with ALM...11

The Live approach...12
Live approach guidelines...12
Guideline 1: Single ancestor..12
Guideline 2: Single source...12
Guideline 3: Single repository...12
Guideline 4: Custom work item class specializations.............12
Guideline 5: Live features..13
Guideline 6: Exposure...13
Live levels..14
Live information...15

Information availability..16

The Live approach and Agile development.......................17

Conclusion..18

References..19

Siemens Digital Industries Software   2

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

Agile principles evolved to address
the perceived limitations of
Waterfall development – mainly
that Waterfall does not show
results until the end, engages
stakeholders too late, and
unnecessarily delays testing.
Agile as a software development
approach has gone mainstream,
because Agile is focused on
keeping the customer happy and
gaining a clear understanding of
customers’ requirements.

To accommodate these blended hybrids,
organizations are replacing legacy secular tools that
create islands of inefficiencies and exclusion zones
with application lifecycle management (ALM) tools
that are unified by design, web-based, and easily
customizable to support multiple, continuously
evolving processes.

This paper describes how some of the most widely
adopted best practices, especially the adoption and
refinement of Agile methods, have significantly
reduced software development risk, in terms of
regulatory compliance and increased project success
rates. These guidelines are referred to as “Live
approach” because they are based on hybrid
Agile-Waterfall principles using just-in-time data
provided by modern ALM solutions.

The traditional Waterfall model strengths can
generally be characterized as plan-driven models
of well-defined processes of planning; firm
requirements, requirements traceability and
testability, and clearly defined acceptance criteria
are paramount. The strength of these
methodologies lies in the comparability and
repeatability that stem from standardized processes.
Waterfall development is generally considered to be
the least risky development model, which makes it
popular for large or long software development
projects, particularly in industries with project or
product exposure to risk of life, limb, or liberty
monitored as such by government bodies.

But the reality is that no organization is a purist
following any single prescriptive methodology.
Rather, we are “blenders,” mixing what we need
from Waterfall, Agile (Scrum, eXtreme
Programming), Rational Unified Process (RUP),
Spiral, or other methodologies into what we need
for our projects and organizations to succeed.

Introduction

Siemens Digital Industries Software   3

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

It has been proven that to outperform with Agile
methods, R&D people must live together in a stimu-
lating environment with few or no distractions
relating to progress reporting, discussions with
management, document fulfillment and so on.

As an example, consider the approach to gathering
eXtreme Programming (XP) requirements (“user
stories”). The customer (or user) should be an
integral part of the development team, answering
developers’ questions in real time, rather than an
external entity. However, this is rarely achievable in
practice because very often the customer is an
organization with thousands of employees spread
over several dispersed countries, and having
complex definition and approval processes for
requirements.

Furthermore, Agile teams meet very often to decide
what they will achieve in the next few days or even
hours. But such best practices can frustrate
managers and executives in a very short time.
These people need long-term planning and strategic
corporate governance of project costs. They need
milestones and deliverables, not a day-by-day
assessment of “what will we achieve today?”

The Live approach to project information handling
can help companies reconcile these disparate but
equally vital needs. Three major areas of interest
around Agile software development can benefit
from the introduction of tools supporting the Live
approach: corporate governance, requirements
management and project management. Any such
new-generation tools and methods must make
software requirements engineering, project
planning and corporate governance directly
involved in software R&D, while keeping the R&D
teams Agile and not adding extra work or
distractions.

The Live approach is not a methodology like XP,
Scrum or RUP. Rather, it is a set of guidelines whose
aim is to define a possible roadmap for software
development environments and tools to make them
open to support different development methods
with a higher degree of usability, and able to pro-
vide “live” information about project status.

Siemens Digital Industries Software   4

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

Agile methods have proven their ability to increase
project success ratios. The fairly wide adoption of
several of them, especially XP, dynamic systems
development method (DSDM) and Scrum, proves
that most of the principles behind the Agile
Manifesto1 are valued by customers and by
developers.

For instance, customers love these statements in
the Manifesto:

•	 “Our highest priority is to satisfy the customer
through early and continuous delivery of
valuable software.”

•	 “Welcome changing requirements, even late in
development. Agile processes harness change
for the customer’s competitive advantage.”

•	 “Deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter timescale.”
On the other hand, developers very much like the
following:

•	 “Build projects around motivated individuals. Give
them the environment and support they need,
and trust them to get the job done.”

•	 “Agile processes promote sustainable
development.”

•	 “Simplicity – the art of maximizing the amount of
work not done – is essential.”

•	 “The best architectures, requirements, and
designs emerge from self-organizing teams.”

Value propositions of Agile principles

Siemens Digital Industries Software   5

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

Scrum

Scrum provides a project management
framework that focuses development into
30-day sprint cycles in which a specified set
of backlog features are delivered.
The core practice in Scrum is the use of daily
15-minute team meetings for coordination
and integration. Scrum has been in use for
nearly ten years and has been used to
successfully deliver a wide range of products.

It is clear that the most widely adopted Agile
methods completely support key Agile values:

“We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

•	 Individuals and interactions over processes
and tools

•	 Working software over comprehensive
documentation

•	 Customer collaboration over contract
negotiation

•	 Responding to change over following a plan

That is, while there is value in the items on the
right, we value the items on the left more.”

Most common Agile methods

Let’s look briefly at some of the most commonly
used Agile methods. The most relevant characteristic
practices for the discussion that follows are cited in
the points below. A broader dissertation can be found
in Agile Software Development Ecosystems2.

Dynamic systems development method (DSDM)
DSDM is an outgrowth of, and extension to,
rapid application development (RAD) practices.
DSDM boasts the best-supported training and
documentation of any Agile method. DSDM’s nine
principles include active user involvement, frequent
delivery, team decision making, integrated testing
throughout the project lifecycle and reversible
changes in development.

Extreme programming (XP)
XP preaches the values of community, simplicity,
feedback and courage. Important aspects of XP are
its contribution to altering the view of the cost of
change and its emphasis on technical excellence
through refactoring and test-first development. XP
provides a system of dynamic practices, whose
integrity as a holistic unit has been proven. Among
others there are practices like the daily stand-up
meeting and direct involvement of the customer.

Siemens Digital Industries Software   6

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

The aforementioned Agile values, however, are
not applicable in every environment. Consider
an international corporation with its software
R&D spread over three continents, with R&D
serving other departments of the organization
located all around the world.

Is it possible to locate the “customer” together with the R&D team?
What about processes, multilingual manuals, corporate and R&D
budgeting, and delivery – plus resource planning?

In big companies, the software development activity (among others)
is increasingly being outsourced to offshore premises and providers,
creating a growing need in requirements specification and project
progress control. In all these situations, code is not the only artifact
to be produced.

These facts (and many more) are the foundations of the Capability
Maturity Model Integration (CMMI) evolution3. The aim of CMM
was to certify the development ability of a software R&D team,
while CMMI certifies much wider business processes inside an
organization, including software development. Another very
interesting reason for moving CMM into CMMI is the need for
integrating corporate processes and compliance with software
development. In light of this, CMMI and Agile methods seem to be
incompatible, due to the much broader coverage of the former
compared to the latter.

The Agile conundrum: requirements and governance
versus development
Over the years, Siemens Digital Industries Software has completed
many large-scale implementations where we are contracted to
integrate teams of Agile development with the organization’s desire
for increasing levels of CMMI compliance. “Extreme Programming
from a CMM Perspective”4 also tackled the issue of integrating XP
and Scrum with CMM and found that there are some areas in CMM
that fall outside the coverage of the considered Agile methods. Such
uncovered areas affect process and project control and the
monitoring and control of suppliers.

Staying Agile: is it possible

Siemens Digital Industries Software   7

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

Another interesting perspective is related to
customer involvement. For complex systems this
often cannot be solved by having the customer sit
with the R&D team because formal requirements
gathering and refinement is performed by dozens or
even hundreds of people, geographically dispersed
as often as not. Agile Requirements, Methods and
Tools 13.35 states that requirements definition
activities nearly always produce documents that are
directed from writer to reader, such as from the
customer to R&D, and frozen – that is, not
supporting change – and this is in direct conflict
with iterative and change-driven Agile methods.
Furthermore, since Agile methodologies require
team collocation and high domain knowledge, if the
contractors or outsourced partners are working
off-site, it cannot be Agile.

Another interesting fact: “In spite of what many
people think, it is not true that Agile methods are
without artifacts, although they are certainly less
documentation-focused than traditional techniques.
Still, this is an issue for organizations for whom the
CMMI is the basis for rating their organization.”6

So software requirements management, as well as
risk management, regulatory compliance, corporate
governance, and project management disciplines in
large or distributed organizations can actually suffer
from the introduction of Agile methods in R&D. Is a
reasonable compromise even possible?

The answer can be found in one of the principles of
the Agile Manifesto itself:

“Give them the environment and support they need,
and trust them to get the job done.”

This could be interpreted as “give developers a
toolset that is fully integrated in the wider processes
of the company and let them collaborate remotely
as if they were on the same site as their customer,
and let their work be seamlessly audited and
controlled.”

In practice this means that while developers are
coding in an Agile world using Agile tools, other
people in the company must be able to define and
refine requirements, submit changes, manage test
cases and track project status using their favorite
methods and tools.

Is that realistic? Are tool vendors providing anything
that addresses this need?

Siemens Digital Industries Software   8

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

Software development and its supporting
environments and tools are entering an historic
time. The actual proposition of tools follows a pretty
old concept that is strongly rooted in the Waterfall
model of software development, with some
exceptions.

The “bad old days”: disparate tools and data

The reason for disparate tools and data must be
researched in past achievements in providing
support to each phase of the software development
process: at some point in time, for example, it
was clear that in order to support collaborative
programming, the development community needed
version management solutions. Some time later, it
became evident that software architects and their
customers needed new tools for requirements
specification and approval in order to manage
complex customer-provider relationships. The list
goes on and on, covering test management, change
request and propagation handling, customer
support and other functions.

The problem that quickly arose is that every new
toolset that vendors have put on the market defined
a new island of automation. Each of these islands,
in fact, defined a new data model, a new access
policy, a new repository, and so on. Of course it
soon became abundantly clear that the information
stored in diverse logical data models and
repositories had to be integrated. So vendors
started building bridges to connect the islands.
In many cases, some features that were introduced
to support one process were moved into another to
extend the support of some information set.

After these improvements, vendors started provid-
ing the market with solutions to support versioned
requirements, change requests connected to source

code, and so on.

Today’s state-of-the-art tools proposition

Application lifecycle management is the
state-of-the-art proposition in the software
development tools market. From the perspective
of the aforementioned history of software
development tools, ALM represents the latest
achievable step on the stairway to integrate islands
of automation. Regardless of what analysts may
preach, legacy vendors will never achieve ALM with
dinosaur code because they cannot economically or
ethically ditch laggards paying annual maintenance
fees. Legacy vendors respond to the ALM movement
by trying to provide their customers with expensive,
unreliable one-off integrations between tools
proposed by different vendors. This level of effort is
nothing more than simple data exchange between
tools, anti-Agile, and certainly not the
recommended Live approach.

Software development tools:
state of the art

Project plan isle

Code isle

Test plans isle

Requirements isle

Siemens Digital Industries Software   9

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

The new breed of ALM

A close look at the new breed of ALM propositions
reveals the following common characteristics: ALM
solutions aim to be broad, with wide coverage of
feature sets and support for multiple project roles
and deep, extensive support for the feature set
needed by each project role.

ALM solutions nearly always come with interesting
guidelines or even full methodologies to support
software development. Methodologies and tools
are, of course, integrated. Integration (as well as
breadth and depth) is what customers expect in
ALM solutions.

In addition to integrations, customers expect
corporate governance, risk management,
compliance management, full project progress
tracking and project-related cost control over
dispersed teams. Why not? A true ALM system is
unified, with consolidated linked data and work
items that can be easily search queried and
presented in the organization’s standard reports
without having to rely on developers, IT or
contractors.

In conclusion, ALM solutions offer broad support
to people covering different roles in software
development, deep feature sets for each of them,
and integrated functionalities to bridge the
information islands created by the different tools
comprising the suites.

Siemens Digital Industries Software   10

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

Gartner information technology research and advi-
sory company agrees that Agile should integrate
ALM for best results. In their “Key Issues for ALM,”
they explain: “Projects deploying Agile methods,
geographically distributed projects – in which
applications are built and maintained by teams
working worldwide, and complex process and
product development situations – all benefit from
more effective ALM.” A hybrid process allows you
the flexibility you need with the benefit of greater
control.

Even if such ALM solutions have been widely
adopted by many companies, they are not much
appreciated by Agile teams for several reasons:

•	 Integrated tools that support their “integrated”
methodologies are perceived as not Agile
culture friendly.

•	 During Agile development, all the activities run
in parallel. Legacy ALM tools integrations
include batch transport of information from
one repository to another (bridges between
islands), preventing instant notification of
changes.

•	 ALM solutions support different roles with
different tools having different processes. Agile
processes force teams to live together in the
same room, use the same tool and the same
method.

•	 One of the most appreciated payoffs of Agile
methods is interchangeability of people. ALM
leans more toward project role specialization.

The Live approach can solve the problem of
integrating Agile development teams into a wider
company/corporate infrastructure by providing
developers with live and available access to the
wider corporate information via the tools they
prefer (and need) to use.

So, to sum up what has been discussed thus far:

1.	 Using Agile methods in software development
gives good results.

2.	 Insulating Agile teams is pretty difficult in many
situations: they are very often part of wider and
not-at-all agile corporate processes.

3.	 Available software development tools are
inadequate for Agile teams, which must be
involved in wider corporate processes such as
risk or
compliance management.

Integrating Agile with ALM

Siemens Digital Industries Software   11

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

The Live approach from Siemens Digital Industries
Software consists in a set of guidelines and
taxonomy. Guidelines introduce a new philosophy
in managing software development artifacts and
development-related information. From these
guidelines come a set of criteria defining taxonomy
to check the level of adoption of the Live approach
in development environments and tools.

Live approach guidelines

The Live approach guidelines (referred to hereafter
as Live guidelines) can be divided into two main
areas:

1.	 Relating to the Live information, the informa-
tion model and storage (guidelines 1 to 4)

2.	 Relating to information availability, the way in
which the Live information is accessed and
exposed (guidelines 5 and 6)

Guideline 1: Single ancestor

The work item class is the common ancestor in an
inheritance hierarchy of all the information and
artifacts related to the development activities. Its
instances are named work items.

More informally, this guideline says that all the
artifacts to be created and activities to be performed
in the software lifecycle (such as, for example,
requirements, change requests, tasks, test plans)
are work items. This means that everything
managed during software development, from
requirements to code, is an instance of work
item class.

Guideline 2: Single source

The instances of the work item class and the
instances of all its specializations are “single source”
– all project information exists only once in the
development environment. As an example, consider
a test plan that is created during requirements
specification. It must be the same test plan
connected to the requirements that generated it,
and to the defects found during its execution
(never a copy of it).

Guideline 3: Single repository

The repository where work items are stored should
be logically unique. This does not necessary mean
that the repository is physically one, but the
repository must appear unique from the user
perspective.

While it is theoretically possible to build a logical
single repository on top of an integration of
multiple repositories, this practice is not
recommended because it will probably lead to a
situation like the bridge-building between islands of
automation. There are some exceptions to be
considered; for example, to support scalability
needs where multiple repositories provide better
performance with mirroring, load balancing,
remote replication, and so on.

Guideline 4: Custom work item class
specializations

Users can define their own specializations of the
work item class to match their corporate or project
needs. Examples can be more or less the usual
“requirement,” “change request,” “task,” “source file,”
“code change log,” but also “customer purchase
order” or whatever makes sense for the organization
or just for a single project. This possibility includes
the customizability of the information to be stored
in the work item class specializations and the work
item class itself.

The Live approach

Requirement Covers

Relates to

Depends on

Implements

Relates to

Duplicates
Parent

Parent

Test case

Requirement Defect

Requirement Defect

Task

Siemens Digital Industries Software   12

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

Guideline 5: Live features

A feature is Live when it is an operation applicable
to any instance of the work item class and of its
specializations. In other words, a feature is Live
when it can be applied to any work item.

As a useful example, consider the “show progress”
operation that typically applies to a task to get the
actual progress of it. Promoting such functionality to
become “Live show progress” makes this feature
applicable to any work item; so it is possible to get
the actual progress on a test plan, on a requirement
specification, on a change request, and so on.

It should already be clear that the larger the number
and the greater the power of the Live features in a
certain lifecycle management solution, the higher
the benefits for its users.

Creating new Live features should represent a
stimulating activity for the provider of vertical tools:
until now they’ve been refining features for a
certain phase in the software lifecycle and/or for a
certain role in the development chain; now they
should imagine how these features could be
extended to offer their value to every role in every
phase of software development.

Consider, as another example, the benefit of having
Live impact analysis. This means having the actual
requirements-oriented link navigation needed to
find the requirements impacted by a change,
promoted in a way to wider navigation in order to
find every development artifact and activity
impacted by the change. So performing a Live
impact analysis operation will enable the user to
easily find all the activities that were performed to
implement a requirement, their cost, the people
involved, all the artifacts to be changed (such as
source code and user manuals), plus eventually the
impact of the implementation of the change on the
project plan deliverables at certain milestones.

Guideline 6: Exposure

When using Live features to access work items, the
resulting information should be exposed in a way
that is appropriate for every single user role. This
means that Live features should be available to
different user roles in the preferred format and with
the specific content desired by the users covering
a role.

Same data – different views.

Siemens Digital Industries Software   13

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

Each level contains criteria to evaluate the
compliancy of the software development
environment against Live guidelines. Each level
extends the criteria of the previous level. In what
follows, the criteria are discussed separating the
Live guidelines according to their area: Live
information and information availability.

For example, project managers will want access to
project progress information in a plan format, while
executive managers will want to see only critical
paths in reaching milestones summarized in a dash-
board, while developers will see the tasks assigned
to them and their deadlines directly in their integrat-
ed development environment (IDE).
 It is clear that each development environment can
be compliant to these guidelines at a different level
at a certain point in time.

Live levels

This section introduces the Live approach
compliancy taxonomy. The taxonomy contains a set
of criteria against which to check any development
environment (that is, any kind of development
infrastructure and access toolset) to state its level of
compliancy with the Live approach: such compliancy
levels are hereafter referred as Live levels.

The taxonomy contains five Live levels. The last level
provides full compliancy to all the guidelines, plus a
rich set of Live features correctly exposed to each
different user role. Although the last level should
stand as the final state to be reached by every
toolset at the end of the development tools
revolution, intermediate levels 1 to 4 are defined
as a map for getting there. These intermediate
levels should help companies to assess the actual
degree of support for the Live approach by their
development infrastructure, and suggest further
steps for improvement to move to the next level.

The five Live levels are:

•	 Level 1 - Foundation

•	 Level 2 - Connection

•	 Level 3 - Fusion

•	 Level 4 - Control

•	 Level 5 - Govern

Govern Live dashboard

Control Live plan

Fusion Live track

Connection Live trace

Foundation Live search

Siemens Digital Industries Software   14

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

Live information

This section introduces the criteria to evaluate the
level of compliancy of the software development
environment against Live guidelines 1 to 4. So,
these criteria are related to the way in which the
information is organized: data model and storage.

1.	 Foundation level. At this level, guideline 1
(single ancestor) and guideline 2 (single source)
must be supported. So the work item class is
defined as common ancestor and all its
instances and its successors’ instances are
single source.

2.	 Connection level. Work items are connected
through links. Links must support different
connection types according to link roles. So
work items can be connected with “contain-

ment” links or “impact” links, for example.

3.	 Fusion level. At this level, guideline 3 (single
repository) is supported: work items are stored
in a single logical repository. Additionally, the
repository must support version and history
management on work items and links, plus
work item workflow management with sta-
tuses, transitions, assignees and user notifica-
tion mechanisms over at least status changes.
Finally, the repository must
guarantee a secure access.

4.	 Control level. Work items store information
related to time, priority and cost, support
discussion and approvals. Note that the content
of time, cost and priority information is broad:
these may include estimated time to comple-
tion, planned start, planned end, assigned
project milestone, expected cost, actual cost,
value, added value, priority,
severity, etc.

5.	 Govern level. At the last level, guideline 4
(custom work item class specializations) is
supported. Link types are user-defined as well.
So work item types, content and connections
can be customized based on user, project and
corporate needs. Risk, resource and financial
management related information are added as
well.

Siemens Digital Industries Software   15

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

This section introduces the criteria to evaluate the
level of compliancy of a software development
environment against guidelines 5 and 6. These criteria
are related to the way in which the information is
managed: features and their exposure.

The Live features to be added at each level are:

1.	 Foundation level. Live search: work items are
searchable by means of every attribute.

2.	 Connection level. Live trace: work items support
link role-based navigation, and impact and
traceability analysis.

3.	 Fusion level. Live track: extended lifecycle
management for the work items.

4.	 Control level. Live plan: project planning and
progress where all the work items, or work items
belonging to selected specializations of the work
item class, appear in a self-updating plan. This
means that the plan is automatically created from
the information stored in work items (such as
priorities, severities and dependencies) and
recreated as a result of any change to planned
work items.

5.	 Govern level. Live dashboard: to govern every
project activity in real time. The dashboard is also
able to show multi-project information such as
resource workload and cross-project code re-use,
for example.

At every level, the Live features must provide
information to the user in the appropriate format
for the user’s role. In the “island of automation”
approach, there is only role-specific information
available in the appropriate format for users
covering a role. In the Live approach, all the
information is available to all users in their desired
format.

As an example, consider project leaders, who deal
with project plans and Gantt charts. To get a view
over the status of their projects, they must stroll
around looking at requirements contained in Office
documents, issues contained in trackers, code
stored in versioning systems, and so on. With the
Live approach, the actual status of every work item
(that is, the status of their project), is directly avail-
able for them in a plan format.

The information provided by Live features at every
level must be available to every user. Thus, if the
results of a Live search included in Live level 1 can
be provided to every user by means of a unique web
interface, at Live level 4, different users will deal
with the Live plan in a different way: developers
reporting their progress in their IDEs, project leaders
arranging the priorities on a Gantt, managers
looking at money consumption in a spreadsheet
where they can re-assign budgets.

Information availability

Table summarizes the criteria for Live levels compliance.

Level Live information Information availability

Level 1 – Foundation The work item class is defined as common
ancestor and all its instances and its
successors’ instances are single source

Live search

Level 2 - Connection Work items are connected through typed links Live trace

Level 3 - Fusion Work items are contained in the same
versioned environment supporting change
and workflow management

Live track

Level 4 - Control Work items store time and cost related
information

Live plan

Level 5 - Govern Work item types, content and connections can
be customized

Live dashboard

Siemens Digital Industries Software   16

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

The Live approach and Agile
development

The Live approach can be applied easily to bridge the
gap between Agile (in the R&D team) and formal
(outside R&D) processes using tools that provide Live
and available project information starting from Live
level 4, as specified in the previous section.

At Live level 4, for example, requirements, tasks,
project milestones and project cost information as
well as change requests, test plans, features, source
code, builds, etc. all exist “single-source” in a
versioned, fully traceable, and workflow-driven
repository. Additionally, all relevant information for
each corporate or project role is available in the role’s
preferred format.

Example: Complex requirements inception

As an example, given appropriate Live approach
tools, a complex requirements inception phase with
refinement and several approval levels can be
performed inside the client corporation in Atlanta
by means of Office documents in the same
environment where the project manager in Munich
specifies tasks, priorities and milestones in Gantt
format, and where the development team in Delhi
tracks their artifacts and progress in an Agile way.

When moving to Live level 5, such dispersed teams
will be seamlessly providing the executive
management in San Francisco with crisp
information that reveals delays, bottlenecks,
costs and risks.

Siemens Digital Industries Software   17

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

Agile methods, representing a kind of rejection of
all the infrastructures of methods and tools built in
the last decades to produce software, have defined
a new, successful, and “free” way of creating
working code. Unfortunately, Agile methods are not
always practical to apply due to risk management,
compliance management or process-oriented
environments of larger and more dispersed
companies.

Staying agile in software R&D departments and still
matching corporate needs is possible thanks to a
new category of software development tools that
has in fact already emerged in the market and is
rapidly making significant inroads in companies that
have experienced the dilemma identified in this
discussion: the need to apply proven Agile software
development methods within a wider, less Agile (or
non-Agile) corporate context. An example of such a
tool is Polarion® ALM from Siemens Digital

Industries Software, which actually stands at level 5
in the Live levels taxonomy.

The ability to mix the benefits of Agile software
development and more formal requirements
management, planning and governance methods of
the Live approach opens new directions for future
research in creating vertical Live methodologies and
tools to support the needs of different business
sectors.

Conclusion

Issue and risk
management

Audits and
metrics,
reports

Reuse and
branch

management

Requirements
management

Build and
release

management

Agile/hybrid
project

management

Test and
quality

management

Change and
configuration
management

Planning and
resource

management

Collaboration
Traceability
Workflow

Siemens Digital Industries Software   18

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

References

1.	 Manifesto for Agile Software Development,
 http://agilemanifesto.org

2. 	 J. Highsmith, Agile Software Development Ecosystems,
Pearson Education, 2002

3. 	 CMMI, http://www.sei.cmu.edu/cmmi/
4. 	 M. Paulk, “Extreme Programming from a CMM Perspective,”

IEEE Software 18.6, 2001
5. 	 R. Davies, Agile Requirements, Methods and Tools 13.3,

2005
6. 	 D. Kane, S. Ornburn, “Agile Development: Weed or

Wildflower?” InformIT, 31 Aug. 2002

Siemens Digital Industries Software   19

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

Polarion® ALM™
The unified application lifecycle management solution.

Connect teams and projects, and improve application
development processes with a single, unified solution for
requirements, coding, testing, and release.

Polarion® Requirements™
Complete software requirements management solution.

Effectively gather, author, approve and manage software
requirements for complex systems across the full project
lifecycles.

Polarion® QA™
Complete test and quality management solution.

Design, coordinate, and track all your test management
activities in a single, collaborative QA environment.

Polarion® ALM Polarion® QA Polarion® Requirements

Core functionality

Adults, metrics and reports

Change and configuration management

Software requirements management

Test and quality management

Issue and risk management

Re-use and branch
management
Planning and resource
management
Agile/hybrid project
management
Build and release
management

Variants management

PLM-ALM integration

Polarion® Review
er™

 – Review
/Approve

Polarion® Pro™
 – Tasks O

nly

Add-on – Separately licensed functionalityFull functionality

Siemens Digital Industries Software   20

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

About Siemens Digital Industries Software

Siemens Digital Industries Software is driving
transformation to enable a digital enterprise where engineering,
manufacturing and electronics design meet tomorrow. Our
solutions help companies of all sizes create and leverage digital
twins that provide organizations with new insights, opportuni-
ties and levels of automation to drive innovation. For more
information on Siemens Digital Industries Software products and
services, visit siemens.com/software or follow us on LinkedIn,
Twitter, Facebook and Instagram. Siemens Digital Industries
Software – Where today meets tomorrow.

About the author

Dr. Stefano Rizzo is a product leader and visionary
at Siemens Digital Industries Software. He has some
18 years of IT consulting and mentoring experience
in several different business areas including finance, telecom,
software and government. As a mentor he has helped dozens of
big companies introduce new development processes and
methods. As a teacher he has trained thousands of people in
UML, requirements management, and Agile development. As a
methods evangelist he has helped hundreds of companies to
share his vision about collaborative software development.
His actual focus now is researching and developing methods and
best practices for Agile and Live software development
processes.

siemens.com/software
© 2021 Siemens. A list of relevant Siemens trademarks can
be found here. Other trademarks belong to their respective
owners.

00000-D1 6/21 C

Siemens Digital Industries Software

Headquarters
Granite Park One
5800 Granite Parkway
Suite 600
Plano, TX 75024
USA
+1 972 987 3000

Americas
Granite Park One
5800 Granite Parkway
Suite 600
Plano, TX 75024
USA
+1 314 264 8499

Europe
Stephenson House
Sir William Siemens Square
Frimley, Camberley
Surrey, GU16 8QD
+44 (0) 1276 413200

Asia-Pacific
Unit 901-902, 9/F
Tower B, Manulife Financial Centre
223-231 Wai Yip Street, Kwun Tong
Kowloon, Hong Kong
+852 2230 3333

Siemens Digital Industries Software   21

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

