

Introduction to Transfer Path Analysis

Restricted © Siemens AG 2016

Realize innovation.

Transfer path analysis for mechanical industry The basics, from theory to practice

Unrestricted © Siemens AG 2019

Page 2 31-01-2019

Transfer path analysis for mechanical industry The basics, from theory to practice

Unrestricted © Siemens AG 2019

Page 3 31-01-2019

Transfer Path Analysis Introduction

Transfer path analysis quantifies and visualizes the strengths of selected sources and their contribution via multiple transmission paths to a selected receiver signal

Unrestricted © Siemens AG 2019

Page 4 31-01-2019

Transfer Path Analysis Source-transfer-receiver approach

SIEMENS

Transfer Path Analysis Step 1: Which path is contributing?

SIEMENS

Unrestricted © Siemens AG 2019

Page 6 31-01-2019

Transfer Path Analysis Step 2: Why is path contributing?

SIEMENS

Unrestricted © Siemens AG 2019

Page 7 31-01-2019

System Engineering for NVH Source-transfer-receiver model

SIEMENS

Unrestricted © Siemens AG 2019

Page 8 31-01-2019

Hybrid Modeling – Example Engine Noise inside Cabin

SIEMENS

Benefits of hybrid modeling:

- Spend less time correlating components. Use test representation of components in a system assembly.
- Promotes component reuse FE model of new component and reuse of test data from legacy/previous programs.
- Smaller models → Rapid design iteration (e.g. when tuning mounts).
- NVH targets can be cascaded to suppliers.

Unrestricted © Siemens AG 2019

Page 9 31-01-2019

Hybrid Modeling – Use Case 2 (AUTO OEM)

SIEMENS

- Test Tire Component
- Equivalent model of a damper
- FE models of Subframe, Suspension Arms, Knuckle, Strut and Brake

(<u>Courtesy</u>: A Hybrid Full Vehicle Model for Structure Borne Road Noise Prediction – SAE Paper 2005-01-2467)

Focus \rightarrow Modeling accuracy

Hybrid Full Vehicle Road Noise Evaluation (Simcenter and NX Nastran)

SIEMENS

Unrestricted © Siemens AG 2019

Page 11 31-01-2019

NVH Results – Post-processing in Simcenter Noise and Vibration Modeling

SIEMENS

Unrestricted © Siemens AG 2019

Page 12 31-01-2019

Transfer Path Analysis What needs to be measured?

SIEMENS

- Forces going into the structure, requires in general quiet some measurements
- Acoustical sources
- Target locations

In the lab: measurement of the FRF, is also a tedious job

In general, TPA is a measurement intensive application

Unrestricted © Siemens AG 2019

Page 13 31-01-2019

SIEMENS

OPA method

Only operational measurements required:

- Accelerations at the force locations
- Pressures at the Acoustical sources
- Target locations

<u>Fast</u> method, takes ±1 day of measurements

Transmissibility method

Page 14 31-01-2019

OPA method: Potential problems for wrong results: cross-coupling

SIEMENS

 $y = T_1 a_1 + T_2 a_2 + T_3 p_3$

Where each acceleration/pressure can be written as: $a_i = H_{1i} \cdot f_1 + H_{2i} \cdot f_2 + H_{3i} \cdot Q_3$

Unrestricted © Siemens AG 2019

Page 15 31-01-2019

OPA method: Potential problems for wrong results: cross-coupling

SIEMENS

E.g. $a_2 = H_{12} \cdot f_1 + H_{22} \cdot f_2 + H_{32} \cdot Q_3$

Normally $H_{22}f_2 >> H_{12}.f_1 + H_{32}.Q_3$

Or the acceleration for a path is normally proportional to the force at that location $a_2 \approx f_2$

OPA method: Potential problems for wrong results: cross-coupling

With cross coupling it can happen that e.g. $H_{12}f_1 >> H_{22}f_2 + H_{32}Q_3$

Or the acceleration at one location is caused by a force at another location, causing this path, e.g. 2, to be considered to be the largest contribution while the cause is due to a force at another location

 $T_2 a_2 > T_1 a_1$ and $T_2 a_2 > T_3 p_3$ due force at f_1

Unrestricted © Siemens AG 2019

Page 17 31-01-2019

Transfer path analysis for mechanical industry The basics, from theory to practice

Unrestricted © Siemens AG 2019

Page 18 31-01-2019

Transfer Path Analysis Operational measurements

SIEMENS

During operations:

- Forces going into the structure, requires in general quiet some measurements
- Acoustical sources
- Target locations

In the lab: measurement of the FRF, is also a tedious job

In general, TPA is a measurement intensive application

Unrestricted © Siemens AG 2019

Page 19 31-01-2019

Test Based TPA Process Overview

SIEMENS

Unrestricted © Siemens AG 2019

Page 20 31-01-2019

Transfer Path Analysis: Requirements: One integrated process

Unrestricted © Siemens AG 2019

Page 21 31-01-2019

Transfer Path Analysis: Simcenter QSources Requirements: Efficient & Accurate FRF Acquisition

SIEMENS

Reciprocal FRF excitation hardware

- ✓ Fast installation
- ✓ High noise levels(>100dB)
- Internal sound source strength measurement
- ✓ Omni-directional sources

Direct FRF excitation hardware

- ✓ Miniaturized to the maximum
- ✓ Efficient installation, auto-alignment and no external support necessary
- ✓ Integrated force and local acceleration sensors
- ✓ Enables excitation at body engine/suspension interfaces
- ✓ Wide frequency range

Unrestricted © Siemens AG 2019

Page 22 31-01-2019

Transfer Path Analysis: Requirements: All Load Estimation Methods

SIEMENS

Unrestricted © Siemens AG 2019

Page 23 31-01-2019

Transfer Path Analysis Load identification: mount stiffness method

SIEMENS

Unrestricted © Siemens AG 2019

Page 24 31-01-2019

Transfer Path Analysis Load identification: matrix inversion method

Unrestricted © Siemens AG 2019

Page 25 31-01-2019

Transfer Path Analysis Measurements - Loads

SIEMENS

Unrestricted © Siemens AG 2019

Page 26 31-01-2019

Transfer Path Analysis Measurements - Loads

SIEMENS

Unrestricted © Siemens AG 2019

Page 27 31-01-2019

Transfer Path Analysis Measurements Simcenter OPAX

SIEMENS

$$P(\omega) = \sum H_i(\omega) F_i(parameters, a_{ai}(\omega), a_{pi}(\omega))$$

- Soft mounts $F_i(\omega) = K_i \frac{(a_{ai}(\omega) a_{pi}(\omega))}{-\omega^2}$ Hard mounts $F_i(\omega) = K_i \frac{a_{ai}(\omega)}{-\omega^2}$

(dis)advantages

- Limited set of FRFs required
- No disassembly into trimmed-body condition (depends on the expected accuracy)
- Limited body-information • (compared to Matrix-Inversion)

Unrestricted © Siemens AG 2019

Page 28 31-01-2019

Transfer Path Analysis Measurements – Transfer functions – Removal of source

SIEMENS

Unrestricted © Siemens AG 2019

Page 29 31-01-2019

Demo

Unrestricted © Siemens AG 2019

Page 30 31-01-2019

Transfer path analysis for mechanical industry The basics, from theory to practice

Unrestricted © Siemens AG 2019

Page 31 31-01-2019

Strain-based load identification Problem definition: Closely coupled paths example

SIEMENS

Road Noise TPA:

- 72 paths/loads examined
- Some forces very close together

Unrestricted © Siemens AG 2019

Page 32 31-01-2019

Strain-based load identification Problem Definition: Matrix Inversion

SIEMENS

Both Acceleration and Strain Based TPA provide a good quality target response synthesis

Unrestricted © Siemens AG 2019

Page 33 31-01-2019

Strain-based load identification Problem Definition: Matrix Inversion

SIEMENS

Based on this quick **TPA acceleration result** evaluation

- → Path # 2 has an important contribution to the interior noise
- → Path # 2 high contribution level seems to be related to a high force level

However, Path # 2 is the **vertical load** of the connection of a **lateral** suspension link to the body. Can this result be trusted?

Page 34 31-01-2019

Solution Evaluation and Validation Matrix Inversion for Road Noise studies

SIEMENS

Body Load in X-direction Body Load in Y-direction Body Load in Z-direction

Strain-based load identification Problem Definition: Matrix Inversion

SIEMENS

Unrestricted © Siemens AG 2019

Page 36 31-01-2019

Strain-based load identification Problem Definition: Matrix Inversion What is the problem?

SIEMENS

 $\{F(\omega)\} = [H(\omega)]^{-1} \cdot \{a(\omega)\}$

Condition Number for an example structure with a high number of inputs

- → Acceleration FRF Matrix Condition number is much higher as the Strain FRF Matrix Condition number
- → Accurate load identification using the Acceleration FRF Matrix can be problematic

Unrestricted © Siemens AG 2019

Page 37 31-01-2019

Transfer path analysis for mechanical industry The basics, from theory to practice

Unrestricted © Siemens AG 2019

Page 38 31-01-2019

SIEMENS

Frequency domain TPA vs. Time domain TPA

Unrestricted © Siemens AG 2019

Page 39 31-01-2019

Frequency domain TPA vs. Time domain TPA

Page 40 31-01-2019

Frequency domain TPA vs. Time domain TPA

Page 41 31-01-2019

Time-Domain TPA for PBN Instrumentation

SIEMENS

Unrestricted © Siemens AG 2019

Page 42 31-01-2019

Time-Domain TPA for PBN Force / target response calculations

SIEMENS

Unrestricted © Siemens AG 2019

Page 43 31-01-2019

Time-Domain TPA for PBN PBN Contribution Analysis – Example in 3rd gear

SIEMENS

Good match between measured I-PBN result and synthesized ASQ I-PBN result

Unrestricted © Siemens AG 2019

Page 44 31-01-2019

Demo

Unrestricted © Siemens AG 2019

Page 45 31-01-2019

Transfer path analysis for mechanical industry The basics, from theory to practice

Unrestricted © Siemens AG 2019

Page 46 31-01-2019

SIEMENS

Blocked force/free velocity principle

Blocked force/free velocity is a property of the component independent of the environment it's assembled in

Converting Blocked Force (spring connection) to assembly connection forces

$$\{F_{2r}\} = \{F_{3r}\} = [H_{22}^A + H_{33}^B + K^{-1}]^{-1} * [H_{22}^A] * \{F_{2bl}^A\}$$
$$\{F_{2r}\} = \{F_{3r}\} = [H_{22}^A + H_{33}^B + K^{-1}]^{-1} * \{v_{2free}^A\}$$

Unrestricted © Siemens AG 2019

Page 48 31-01-2019

Siemens PLM Software

SIEMENS

Example Applications Steering System

SIEMENS

Unrestricted © Siemens AG 2019

Page 49 31-01-2019

Example Applications Road Noise - Tire

SIEMENS

Source Mechanism

Tire Road Noise

Example: Invariance of wheel center blocked force: Strongly coupled system & coupled to very different vehicles

Unrestricted © Siemens AG 2019

Page 50 31-01-2019

Concept: Component Based TPA Test components and virtual assemble components

Benefits:

- Can try out different car variants before there is a prototype.
- Can use this technique for component target setting \implies Less surprises when assembling the vehicle.
- Can find out worst case combination and limit validation/testing to this configuration intelligent reduced testing

Thank You

Filip Deblauwe Technical Manager Test Solutions CoE

Interleuvenlaan 68 3001 Leuven Belgium

Phone: +32 16 384 437

E-mail: <u>filip.deblauwe@siemens.com</u>

siemens.com

Unrestricted © Siemens AG 2019

Page 52 31-01-2019