Introduction to Transfer Path Analysis
Transfer path analysis for mechanical industry
The basics, from theory to practice

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>• What is TPA?</td>
</tr>
<tr>
<td>2</td>
<td>• Practical considerations</td>
</tr>
<tr>
<td>3</td>
<td>• Strain TPA</td>
</tr>
<tr>
<td>4</td>
<td>• Time TPA</td>
</tr>
<tr>
<td>5</td>
<td>• Component TPA</td>
</tr>
</tbody>
</table>
Transfer path analysis for mechanical industry
The basics, from theory to practice

• What is TPA?
• Practical considerations
• Strain TPA
• Time TPA
• Component TPA
Transfer path analysis quantifies and visualizes the strengths of selected sources and their contribution via multiple transmission paths to a selected receiver signal.
Transfer Path Analysis
Source-transfer-receiver approach

Most time spent during a TPA is on measuring:
- F_i and Q_j during operation
- FRF functions correctly

$$y_k = \sum_{i=1}^{n} \text{FRF}_{i_k} * F_i + \sum_{j=1}^{p} \text{FRF}_{j_k} * Q_j$$

- Structural
- Airborne
Transfer Path Analysis
Step 1: Which path is contributing?

\[y_k = \sum_{i=1}^{n} y_i \]
Transfer Path Analysis
Step 2: Why is path contributing?

\[y_i = H_{ik} F_i \]

- **Source**
 - Structural / Acoustic Loads

- **Transmitter**
 - System characteristics

- **Receiver**
 - Noise & Vibration

Critical loads
Critical dynamics
Worst case scenario
System Engineering for NVH
Source-transfer-receiver model

- Generic structured way to analyze NVH characteristics
- Founded in Test, used in both Simulation and Test

\[y_k = \sum_{i=1}^{n} \text{FRF}_{ik} \cdot F_i + \sum_{j=1}^{p} \text{FRF}_{jk} \cdot Q_j \]

\[\text{structural} \quad \text{airborne} \]
Benefits of hybrid modeling:

- Spend less time correlating components. Use test representation of components in a system assembly.
- Promotes component reuse – FE model of new component and reuse of test data from legacy/previous programs.
- Smaller models → Rapid design iteration (e.g. when tuning mounts).
- NVH targets can be cascaded to suppliers.
Hybrid Modeling – Use Case 2 (AUTO OEM)

• Test Tire Component

• Equivalent model of a damper

• FE models of Subframe, Suspension Arms, Knuckle, Strut and Brake

Focus → Modeling accuracy
Hybrid Full Vehicle Road Noise Evaluation (Simcenter and NX Nastran)

- **tyre/wheel**
 - Measured FRFs in LMS Test.Lab

- **Suspension**
 - FEM

- **Trimmed body**
 - Measured FRFs in LMS Test.Lab

- **Loads, e.g. from Test.Lab**

- **Assembly in Simcenter**

- **Full Vehicle in Simcenter**

- **NX.Nastran run**
NVH Results – Post-processing in Simcenter Noise and Vibration Modeling

Insight
- Identify the problem

Contributions
- Modal Contribution Analysis
- Panel Contributions Analysis
- Grid Contributions Analysis
- Path Contributions Analysis
- Energy Contribution Analysis

Understanding Response
- Operational Deflection Shapes
- Equivalent Radiated Power

Problem
- Which Frequency?

Which Modes?
Which Paths?
Which Grids?
Which Panels?
Which ODS?
Transfer Path Analysis
What needs to be measured?

During operations:
• Forces going into the structure, requires in general quiet some measurements
• Acoustical sources
• Target locations

In the lab: measurement of the FRF, is also a tedious job

In general, TPA is a measurement intensive application
OPA method

Only operational measurements required:
• Accelerations at the force locations
• Pressures at the Acoustical sources
• Target locations

Fast method, takes ±1 day of measurements

Transmissibility method

\[y_k = \sum_{i=1}^{n} T_{ik} \ast a_i + \sum_{j=1}^{p} T_{jk} \ast p_j \]

- structural
- airborne
OPA method:
Potential problems for wrong results: cross-coupling

\[y = T_1 a_1 + T_2 a_2 + T_3 p_3 \]

Where each acceleration/pressure can be written as:

\[a_i = H_{1i} f_1 + H_{2i} f_2 + H_{3i} Q_3 \]
OPA method:
Potential problems for wrong results: cross-coupling

E.g.

\[a_2 = H_{12} \cdot f_1 + H_{22} \cdot f_2 + H_{32} \cdot Q_3 \]

Normally

\[H_{22} f_2 \gg H_{12} f_1 + H_{32} Q_3 \]

Or the acceleration for a path is normally proportional to the force at that location

\[a_2 \approx f_2 \]
OPA method:
Potential problems for wrong results: cross-coupling

With cross coupling it can happen that e.g. $H_{12}f_1 >> H_{22}f_2 + H_{32}Q_3$

Or the acceleration at one location is caused by a force at another location, causing this path, e.g. 2, to be considered to be the largest contribution while the cause is due to a force at another location

$T_2a_2 > T_1a_1 and T_2a_2 > T_3p_3 due force at f_1$
Transfer path analysis for mechanical industry
The basics, from theory to practice

1. What is TPA?
2. Practical considerations
3. Strain TPA
4. Time TPA
5. Component TPA
Transfer Path Analysis
Operational measurements

During operations:
• Forces going into the structure, requires in general quiet some measurements
• Acoustical sources
• Target locations

In the lab: measurement of the FRF, is also a tedious job

In general, TPA is a measurement intensive application
Test Based TPA
Process Overview

Step 1: Preparation
Step 2: Operational Measurements
Step 3: FRF Measurements
Step 4: TPA
Transfer Path Analysis:
Requirements: One integrated process

Step 1: Preparation
Step 2: Operational Measurements
Step 3: FRF Measurements

Signature Testing

Impact Testing
MIMO FRF Testing
MIMO Sine Testing

Excitation Hardware: Simcenter QSources
Transfer Path Analysis: Simcenter QSources
Requirements: Efficient & Accurate FRF Acquisition

Reciprocal FRF excitation hardware
- Fast installation
- High noise levels (>100dB)
- Internal sound source strength measurement
- Omni-directional sources

Direct FRF excitation hardware
- Miniaturized to the maximum
- Efficient installation, auto-alignment and no external support necessary
- Integrated force and local acceleration sensors
- Enables excitation at body engine/suspension interfaces
- Wide frequency range
Transfer Path Analysis: Requirements: All Load Estimation Methods

Step 4: TPA

Load Estimation Methods
- Direct Measured
 - Mount Stiffness
 - Single Path Inversion
 - Single Source – Multiple Indicator
 - Matrix Inversion
 - Multiple Source – Multiple Indicator
- Simcenter OPAX
 - Multiple Source –

Structural

Airborne
Transfer Path Analysis
Load identification: mount stiffness method

\[F_i(\omega) = K_i(\omega) * \left(\frac{a_{ai}(\omega) - a_{pi}(\omega)}{-\omega^2} \right) \]

- Operational accelerations at both sides of mount
- Operational forces
- Mount stiffness

 mounts...

Source

active side

K_i

F_i

passive side

Body

...
Transfer Path Analysis
Load identification: matrix inversion method

FRF matrix

\[
\begin{bmatrix}
F_1(\omega) \\
F_2(\omega) \\
M \\
F_n(\omega)
\end{bmatrix} = \begin{bmatrix}
H_{11}(\omega) & H_{21}(\omega) & \Lambda & H_{n1}(\omega) \\
H_{12}(\omega) & H_{22}(\omega) & \Lambda & H_{n2}(\omega) \\
M & M & M & M \\
H_{1v}(\omega) & H_{2v}(\omega) & \Lambda & H_{nv}(\omega)
\end{bmatrix}^{-1}
\begin{bmatrix}
a_1(\omega) \\
a_2(\omega) \\
a_v(\omega)
\end{bmatrix}
\]

operational forces

indicator accelerations
Direct Measured
Direct measured forces

Mount Stiffness

\[F(\omega) = K(\omega)[X_s(\omega) - X_t(\omega)] \]

Single Path Inversion
- Single Source – Multiple Indicator

\[F_{1}^{\text{oper}} = \begin{bmatrix} F_1^{\text{oper}} \\ F_{1001}^{\text{oper}} \\ F_{1002}^{\text{oper}} \\ F_{1} \end{bmatrix}^{-1} \begin{bmatrix} \omega_{1}^{\text{oper}} \\ \omega_{1001}^{\text{oper}} \\ \omega_{1002}^{\text{oper}} \end{bmatrix} \]

Matrix Inversion
- Multiple Source – Multiple Indicator

\[\begin{bmatrix} F_{1}^{\text{oper}} \\ \vdots \\ F_{n}^{\text{oper}} \end{bmatrix} = \begin{bmatrix} F_1 & \cdots & F_n \\ \vdots & \ddots & \vdots \\ F_1 & \cdots & F_n \end{bmatrix}^{-1} \begin{bmatrix} \omega_{1}^{\text{oper}} \\ \vdots \\ \omega_{n}^{\text{oper}} \end{bmatrix} \]
Transfer Path Analysis Measurements - Loads

Direct Measured

Direct measured forces

Mount Stiffness

\[F(\omega) = K(\omega)[X_s(\omega) - X_t(\omega)] \]

Single Path Inversion

Single Source – Multiple Indicator

Matrix Inversion

Multiple Source – Multiple Indicator

Simcenter OPAX

Multiple Source – Limited number of Indicator

Assume model => reduce indicators by identifying reduced set of model parameters
Transfer Path Analysis
Measurements Simcenter OPAX

\[P(\omega) = \sum H_i(\omega) F_i(\text{parameters}, a_{ai}(\omega), a_{pi}(\omega)) \]

- Soft mounts
 \[F_i(\omega) = K_i \frac{(a_{ai}(\omega) - a_{pi}(\omega))}{-\omega^2} \]
- Hard mounts
 \[F_i(\omega) = K_i \frac{a_{ai}(\omega)}{-\omega^2} \]

(dis)advantages

- Limited set of FRFs required
- No disassembly into trimmed-body condition (depends on the expected accuracy)
- Limited body-information (compared to Matrix-Inversion)
Transfer Path Analysis
Measurements – Transfer functions – Removal of source

Operational condition

\[y = F_1 \times FRF_1 + F_2 \times FRF_2 \]

FRF measurement without removing source

\[y = F_1 \times FRF_1 + F_2 \times FRF_2 \]
- Only valid if \(F_2 \times FRF_2 \ll F_1 \times FRF_1 \)

Correct method for FRF measurement

\[y = F_1 \times FRF_1 \]

Use only when:
- Coupling is weak between paths
- Able to hit at force location
Transfer path analysis for mechanical industry
The basics, from theory to practice

1. What is TPA?
2. Practical considerations
3. Strain TPA
4. Time TPA
5. Component TPA
Strain-based load identification
Problem definition: Closely coupled paths example

Road Noise TPA:

- 72 paths/loads examined
- Some forces very close together

2 times 3 forces to be identified that are very close together
Strain-based load identification

Problem Definition: Matrix Inversion

Example TPA Result: Important Path Contributions

Interior Microphone

Seat Acceleration

Both Acceleration and Strain Based TPA provide a good quality target response synthesis

Measured Response
Calculated Response (Accel TPA)
Calculated Response (Strain TPA)
Strain-based load identification

Problem Definition: Matrix Inversion

Example TPA Result: Interior Noise

Peak in noise level resulting from Tire Cavity Mode

Example TPA Result: Important Path Contributions

Based on this quick **TPA acceleration result** evaluation:

- Path # 2 has an important contribution to the interior noise.
- Path # 2 high contribution level seems to be related to a high force level.

However, Path # 2 is the **vertical load** of the connection of a **lateral** suspension link to the body. Can this result be trusted?

Example TPA Result: set of identified Body Loads

Example TPA Result: set of identified Body Loads

‘Red Load’ – Load of Path 2
Even though the target synthesis is nearly identical for the 2 TPA methods, the identified loads however, are completely different.

Which load set is most reliable?
For a Lateral Link a high Y-dir load is expected, with low level loads in X-dir and Z-dir.
Strain-based load identification
Problem Definition: Matrix Inversion

Comparison and Analysis of 2 close-by forces in Z-direction

Acceleration TPA the 2 loads are in counter-phase over the full frequency range
Strain-based load identification
Problem Definition: Matrix Inversion
What is the problem?

\[\{F(\omega)\} = [H(\omega)]^{-1} \cdot \{a(\omega)\} \]

Condition Number for an example structure with a high number of inputs

- Acceleration FRF Matrix Condition number is much higher as the Strain FRF Matrix Condition number
- Accurate load identification using the Acceleration FRF Matrix can be problematic
Transfer path analysis for mechanical industry
The basics, from theory to practice

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>• What is TPA?</td>
</tr>
<tr>
<td>2</td>
<td>• Practical considerations</td>
</tr>
<tr>
<td>3</td>
<td>• Strain TPA</td>
</tr>
<tr>
<td>4</td>
<td>• Time TPA</td>
</tr>
<tr>
<td>5</td>
<td>• Component TPA</td>
</tr>
</tbody>
</table>
Frequency domain TPA vs. Time domain TPA

Indicators (orders, spectra) → FRF, K → Frequency source model → Loads (orders, spectra) → NTF → Path contributions (orders, spectra)

Indicators (time traces) → FRF Filter → FRF Filter = FRF Filter → FRF Filter = FRF Filter → FRF Filter

Auralization, Signature Analysis, Sound Quality metrics ...
Frequency domain TPA vs. Time domain TPA

Frequency Domain TPA

- Order analysis
- Spectrum analysis
 - Run-up & run-down
 - Stationary: e.g. road noise

Analysis as a function of rpm/frequency

Component editing → Source and NTFs

Auralization → Not directly possible
Frequency domain TPA vs. Time domain TPA

Frequency Domain TPA
- Order analysis
- Spectrum analysis
 - Run-up & run-down
 - Stationary: e.g. road noise

Analysis as a function of rpm/frequency

Component editing ➔ Source and NTFs

Auralization ➔ Not directly possible

Time Domain TPA
- Time traces:
 - Run-up & run-down
 - Stationary: e.g. road noise
 - Transient: e.g. engine start-up
 - Semi-stationary: e.g. idle noise, frequency modulation …

Analysis as a function of time

Component editing ➔ Source and NTFs

Auralization ➔ Audio replay
Time-Domain TPA for PBN Instrumentation

\[L = r \]

\[y_k = \text{targets (measured & predicted)} \]

\[\text{indicators (measured)} \]

\[\text{sources (to be identified)} \]

\[x = 0 \]

\[x = - \]
Time-Domain TPA for PBN
Force / target response calculations

transmission
exhaust
engine
tire
Good match between measured I-PBN result and synthesized ASQ I-PBN result
Transfer path analysis for mechanical industry
The basics, from theory to practice

1. What is TPA?
2. Practical considerations
3. Strain TPA
4. Time TPA
5. Component TPA
Blocked force/free velocity principle

1. Blocked Force

2. Free Velocity

\[F_{2Bl} = H_{22}^{-1} A_{2Free} \]

Blocked force/free velocity is a property of the component independent of the environment it’s assembled in.
Converting Blocked Force (spring connection) to assembly connection forces

\[\{F_{2r}\} = \{F_{3r}\} = [H_{22}^A + H_{33}^B + K^{-1}]^{-1} \times [H_{22}^A] \times \{F_{2bl}\} \]

\[\{F_{2r}\} = \{F_{3r}\} = [H_{22}^A + H_{33}^B + K^{-1}]^{-1} \times \{v_{2free}^A\} \]
Example Applications
Steering System

<table>
<thead>
<tr>
<th>Source Mechanism</th>
<th>Invariant Source Synth. Model</th>
<th>Sub-Receiver</th>
<th>Receiver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steering System</td>
<td>Blocked Forces & Impedances Mount Pos.</td>
<td>Subframe FEM/TEST FRF</td>
<td>Body FEM/TEST FRF</td>
</tr>
</tbody>
</table>

Invariant Source Load (TEST)

A

\[
\begin{align*}
\{F^A_{bl}\} &= \left[H^C_{i1}\right]^{-1} \cdot \{a^C_i\} \\
\{a^C_i\} &\text{ bench} \quad \times \\
\end{align*}
\]

B

\[
\begin{align*}
\{F^A_{bl}\} \quad &\rightarrow \\
\{F_r\} \quad &\rightarrow \\
p = \left[H^B_{32}\right] \cdot \{F_r\}
\end{align*}
\]

\[
\{F_r\} = \left[H^A_{11} + H^B_{22} + K^{-1}\right]^{-1} \cdot \left[H^A_{11}\right] \cdot \{F^A_{bl}\}
\]

Full System Transfer Function
Example Applications
Road Noise - Tire

Source Mechanism

Invariant Source Load (TEST)

Example: Invariance of wheel center blocked force: Strongly coupled system & coupled to very different vehicles
Concept: Component Based TPA
Test components and virtual assemble components

Benefits:
• Can try out different car variants before there is a prototype.
• Can use this technique for component target setting ➔ Less surprises when assembling the vehicle.
• Can find out worst case combination and limit validation/testing to this configuration ➔ Intelligent reduced testing
Thank You

Filip Deblauwe
Technical Manager Test Solutions CoE
Interleuvenlaan 68
3001 Leuven
Belgium
Phone: +32 16 384 437
E-mail: filip.deblauwe@siemens.com

siemens.com