

Material testing

Unrestricted © Siemens AG 2019

Realize innovation.

The vehicle manufacturer's acoustics challenge

Unestricted © Siemens AG 2019 Page 2 2019-01-30

Siemens PLM Software

What is Acoustic Material Testing?

Sound absorption

Material	Absorption (α)
Unpainted brick wall	0.02 - 0.05
Glass pane	0.05 - 0.2
Hardwood	0.3
Acoustic tiles	0.4 - 0.8
Fiber glass	0.8 - 0.9

Sound absorption Dependence on material thickness

Increased thickness \rightarrow increased absorption in low frequencies High frequencies easiest to absorb

Unestricted © Siemens AG 2019

Page 5 2019-01-30

Sound Transmission Loss (STL)

Transmission Loss (TL): $TL = 10 \log_{10} \frac{W_i}{W_t}$

Improve cabin and overall acoustic performance Acoustic Packaging and Trim optimization

Material Testing Overview techniques

	Absorption	Sound Transmission Loss		
Test on small samples or components	2-mic transfer-function method ISO 10534-2 ASTM E1050	4-mic transfer matrix (mufflers, resonators, materials)		
Test on larger samples or complete objects	ISO 354 ASTM C-423 Alpha cabin	ISO 140-3/4 ASTM E-90 SAEJ1400		
Other techniques	In-situ Road absorption ISO 13472-2	STL + Intensity or holography		

Unestricted © Siemens AG 2019

Page 8 2019-01-30

Sound absorption Based on Impedance tube

Sound absorption in impedance tube 2-microphone method

How to measure the incident and reflected energy?

Absorption coefficient α:

$$\alpha = 1 - \frac{W_r}{W_i}$$

Calculate α from two microphone signals Brief theory overview

Unestricted © Siemens AG 2019 Page 10 2019-01-30

Sound absorption Based on Impedance tube - principles

Impedance tube based on planar wave sound field:

- Source Excitation by a plane surface
- Tube long enough to have only plane waves (for the frequency range of interest)
- Propagation in one direction only

Sound pressure p and sound particle velocity v depend only on the x coordinate

$$\mathbf{p}_i(x,t) = \hat{p}_i e^{i(\omega t - k_1 x)}$$

Plane waves – propagation in one direction only

Sound absorption based on Kundt Tube Amplitude and Phase Corrections

1. Measure Transfer function (TF)

3. Calculate correction FRF

$$H_c = \sqrt{H'_{12}H''_{12}}$$

 \checkmark Ideally, amplitude =1, phase = 0°

2. Switch microphones, measure TF

Hc in practical measurement:

Unestricted © Siemens AG 2019 Page 12 2019-01-30

Sound absorption based on Kundt Tube Amplitude and Phase Corrections

4. Correct every acquired FRF using Hc

 $H_{12}^c = H_{12}/H_c$

 H_c : Correction FRF H^c_{12} : Corrected FRF

5. Use corrected FRF's to calculate absorption coefficient $\boldsymbol{\alpha}$

$$\widetilde{R} = \frac{\mathbf{e}^{-jkx_2} - H_{12}^c \mathbf{e}^{-jkx_1}}{\left|H_{12}^c \mathbf{e}^{jkx_1} - \mathbf{e}^{jkx_2}\right|}$$
$$\alpha_o = 1 - \left|\widetilde{R}\right|^2$$

Unestricted © Siemens AG 2019Page 132019-01-30

Sound absorption based on Impedance tube Frequency limits

Lower frequency limit f_{min}:
Limited by spacing between microphones "s"
$$s > 0.01 \cdot \lambda_{max} \rightarrow f_{min} > \frac{0.01 \cdot c}{s} = 117 \ Hz.$$

Upper frequency limit f_{max}

Depends on spacing between microphones "s" and tube diameter "d".

Based on diameter d: $f_{max} = 0.586 \cdot \frac{c_0}{d} = 0.586 \cdot \frac{343}{0.0348} = 5776 Hz$

Based on spacing s:
$$f_{max} = 0.5 \cdot \frac{c_0}{s} = 0.5 \cdot \frac{343}{0.02921} = 5871 \, Hz$$

c: speed of sound [m/s]
λ: wavelength [m]
s: spacing between
microphones [m]
d: diameter of the tube [m]

Demonstration of Absorption in Tube measurements

Agenda:

Simulation of intake and exhaust systems

End-to-end process **Air intake Transmission Loss**

Exhaust Systems **Prime Applications concerning Acoustics**

Intake and exhaust acoustics many phenomena to account for ...

Perforated Ducts Transfer Admittance

- Capture acoustic cross-talk between two fluids separated by a perforated wall/sheet, using transfer admittance
- Typical use case: mufflers

Name Destination Folder Regions Source Region Acoustic Target Region Acoustic Parameters Search Distance 5 Advanced Options	Surface Rt ▼ 🌽 Surface Rt ▼ 🌽 mm	× × * *
Destination Folder Regions Source Region Acoustic Target Region Acoustic Parameters Search Distance 5 Advanced Options	Surface Rt 👻 🌽 Surface Rt 👻 🌽 mm	× * *
Regions Source Region Acoustic Target Region Acoustic Parameters Search Distance 5 Advanced Options Acoustic	Surface Rt V	▲ • •
Source Region Acoustic Target Region Acoustic Parameters Search Distance 5 Advanced Options	Surface Rt 👻 🌽 Surface Rt 👻 🌽 mm	▲
Target Region Acoustic Parameters Search Distance 5 Advanced Options	Surface Rt 👻 🤌	×
Parameters Search Distance 5 Advanced Options	mm	^
Search Distance 5 Advanced Options	mm	
Advanced Options		• •
		v
Input Method		^
Method Geometric	arameters	•
	ļ	
<u>2a</u> ,	f	
Sheet Parameters		^
Perforation Pattern Hexagonal	Grid	•
Plate Thickness (I) 0.3	mm	
Diameter of Perforations (2a) 2	mm	• •
Distance Between Axes (d) 8	mm	• •
Computation Parameters		v

image courtesy of DearMechanic.com

SIEMENS Ingenuity for life

Porous Materials

Porous material models: equivalent fluid models, rigid or limp frame

- Craggs
- Delany-Bazley- Miki,
- Johnson-Champoux-Allard (FEM)

	Acoustics Miscellaneous		
	Properties	^	
and the second second second	Porous Models	Johnson-Champoux-Allard	
A REAL PROPERTY AND A REAL	Speed of Sound (C)	mm/s 👻 🔻	
	Specific Heat Ratio	•	
A REAL PROPERTY AND A REAL	Dynamic Viscosity	kg/(mm·s) ▪ ▼	
	Prandtl Number	•	
Constant and Constant	Static Flow Resistivity	N·s/m ⁴ · ▼	
A CONTRACTOR OF THE OWNER	Porosity	•	
	Tortuosity	•	
	Characteristic Viscous Length	mm 👻 🔻	
	Characteristic Thermal Length	mm 👻 🔻	
A CONTRACTOR OF A CONTRACTOR O	Frame Type	Rigid Frame 🔻	

Gaurav Kumar

Simulation Technical Consultant Pre-sales Business Development UK

gauravkumar@siemens.com