

Sound source localization techniques

Restricted © Siemens AG 2018

Realize innovation.

Agenda

Sound source localization			
	Why do we need it?		
	How is it done?		
		Beamforming	
		Holography	
	Hungry for more?		
		Parallel data acquisition	
		Interior SSL	

Sounds annoying, where is it coming from?

Looks like it's the pump!

Pump housing? Panel? Leakage?

Sounds annoying, where is it coming from?

When is Sound Source Localization applied?

"What are the main contributors?"

Estimate sound power for objective ranking

"I hear something, but where does it come from?"

Confirm that you are working on the right problem

"How do other properties influence my acoustics?"

Integrate into general purpose measurement systems

Restricted © Siemens AG 2018 Page 5

Agenda

Sound source localization					
	Why do we need it?				
	How is it done?				
	Beamforming				
		Holography			
	Hungry for more?				
	Parallel data acquisition				
	Interior SSL				

How is Sound Source Localization performed?

Advanced

Sound Camera

Simple **Sound Intensity** SoundBrush Stethoscope 0-0037/0037 Bid blas: 55/31 eletance 0.763 (5175 5475 Hz) Fast results Limited hardware ISO sound power & partial sound power Limited hardware Directivity & sound power estimation No reportable data Time-consuming Sound pressure only Limited frequency range Stationary sources only Stationary sources only Stationary sources only

Why don't we just measure sound pressure?

How can we estimate the propagated pressure field from the measured one?

Agenda

ou	und source localization			
	Why do we need it?			
	How is it done?			
	Beamforming			
		Holography		
	Hungry for more?			
	Parallel data acquisition			
	Interior SSL			

S

Beamforming A new method?

- Assume source emits **planar** pressure waves
- Assumption requires **far-field** measurement conditions
 → Distance to source ≥ array diameter D
- Microphone array consists of many microphones which record the sound pressure signal simultaneously
- Spatial distribution of sources causes a small time delay between the measured signals

Beamforming core principle: Sound source origin can be extracted from time delay (or phase delay) information between microphones

Siemens PLM Software

Beamforming Time-domain example

SIEMENS

Ingenuity for life

Beamforming Quality indicators of a Sound Source Localization tool

Dynamic range: "Am I getting the full picture?"

Mainly ~ array <u>design</u>

Demo

Beamforming Array diameter comparison

Focalization A variant to Beamforming

- Planar pressure wave assumption not valid in near-field
- When distance to source < array diameter D, pressure waves are better approximated as **spherical** waves
- Time delay between microphones can be expressed as:

$$\tau = \frac{r_2 - r_1}{c} = \frac{d \cdot \cos(\theta) \cdot (\cos\left(\frac{\varphi}{2}\right) + \sin(\frac{\varphi}{2}) \cdot \tan(90 - \frac{\varphi}{2}))}{c}$$

Practical benefit: Spatial resolution improves by factor ~2

Restricted © Siemens AG 2018 Page 16

Beamforming vs. Focalization Synergy

Beamforming vs. Focalization Synergy

Where does wind noise leak into this vehicle?

2. Focalization

- Near-field technique
- High resolution
- Precise localization

Agenda

bu	und source localization			
	Why do we need it?			
	How is it done?			
		Beamforming		
		Holography		
	Hungry for more?			
	Parallel data acquisition			
	Interior SSL			

S

Near-field Acoustic Holography

How does it work?

Localization principle

- Estimate real pressure field at source based on measured pressure field
- Calculated in spatial frequency domain for parallel plane propagation ('Green' function)
- <u>Quantitative</u> estimation of pressures on source plane with identical dimensions

Near-field Acoustic Holography

Sound power estimation

$$\vec{I} = \overline{p(t) \cdot \vec{v}(t)} \left[W/m^2 \right]$$

Sound Intensity probe:

- $p(t) \rightarrow average of p_1 and p_2$
- v(t) → estimate from pressure gradient (p₁ – p₂ over Δr)

Acoustic camera:

- p(t) → pressure field at source calculated using Holography
- v(t) → estimate from pressure gradient (p'_{source} − p_{source} over Δr)

Sound intensity & power → Objective source ranking!

Page 21

Holography vs. Beamforming & Focalization Synergy

Holography vs. Beamforming & Focalization Synergy

Agenda

ound source localization				
	Why	Why do we need it?		
	How is it done?			
	Beamforming			
	Holography			
	Hungry for more?			
	Parallel data acquisition			
	Interior SSL			

Sound sources don't just make noise

Deeper understanding through parallel data acquisition

- 4 channels (V/ICP) directly on Sound Camera Parallel acquisition with SCADAS front-end
 - Tacho sensor for localization on complete orders over RPM range
 - Correlate engine control strategy to sound generation

Sound sources don't just make noise Deeper understanding through parallel data acquisition

Raw exterior acoustics

What does the pedestrian hear?

Referenced exterior acoustics

What does the driver hear?

Which components are dominant? Structure-borne vs. airborne? Secondary sources?

Restricted © Siemens AG 2018 Page 26

Agenda

Sou	Sound source localization				
	Why do we need it?				
	How is it done?				
	Beamforming				
		Holography			
	Hungry for more?				
	Parallel data acquisition				
	Interior SSL				

Interior sound source localization Why can't we use standard microphone arrays?

Challenges

Compact interior cavity

Sources from any direction, including behind the camera

Propagation towards complex, non-flat geometry

Solution

Solid sphere array with optimized microphone placement

Geometry scanner creates accurate 3D model of interior

Interior sound source localization Rattle noise localization example

- Goal: identify rattle noise source subjectively located above sun shield (yellow)
- Rattle noise audible at 1100 1200 RPM and 2000 – 2200 RPM, 2nd and 3rd gear
- Interior geometry used for propagation:

Interior sound source localization Rattle noise localization example

- Simcenter Geometry Scanner creates 3D mesh of vehicle interior
- 1500 grid points, ~10 cm element size

Restricted © Siemens AG 2018 Page 30

Interior sound source localization Rattle noise localization example

- Rattle origin confirmed on sun shield
- Verified by fixing the top hatch, blocks rattle transfer

31.

30.

29.

28.

27.

26.

- Rattle phenomenon visible between 2500 4000 Hz
- Selection of time-frequency range allows localization on transient noise sources

Introduction to sound source localization

Overview of current techniques

Simple

Stethoscope

Limited hardware

- No reportable data
- Sound pressure only
- Stationary sources only

- ISO sound power & partial sound power
- Time-consuming
- Limited frequency range
- Stationary sources only

- □ Fast results
- Limited hardware
- Directivity & sound power estimation
- Stationary sources only

Sound Camera

Advanced

- Real-time results
- Stationary and transient sources
- Requires more advanced knowledge to operate

Agenda:

Acoustic simulation: application view

Acoustic simulation: different methods/technology

General workflow

Some more examples...

Simcenter 3D Acoustics Application View

Duct (Vibro)Acoustics Intake/ exhaust/ muffler Transmission Loss. orifice noise and shell noise **Random Vibro-Acoustics** Spacecraft Mission De-risking

Simcenter 3D Acoustics

Key Applications

Aero-Vibro-Acoustics Wind Noise	Aero-Acoustics HVAC Noise / Fan Noise	Vibro-Acoustics Powertrain Acoustics	All-Round Meshing Improvements
THE REAL MARKENARY AND ADD		Magnet Road: State Road: Magnet Road: State Road:	
		Series None 1.00 We describe None State 100.70 200.70	

Some Aero-Vibro-Acoustic Applications

Restricted © Siemens AG 2018

Page 37

Engineering View: Source – System Transfer – Receiver Ingenuity for life **System Transfer** Source Receiver **Mechanical** CFD **FEM Vibro-Acoustics** Vibration/Force/Stress Acoustics Simcenter Nastran FEM AML / FEMAO / ATV / VATV Electromagnetic **Analytical TBL** Directivity Sensors the second of P1= P2= **BEM Vibro-Acoustics** Result Envelope $S_{pp}(x_1, x_2, \omega) = \overline{S_{pp}}(\omega) \Gamma(x_1, x_2, \omega)$ Result **Simcenter 3D Acoustics BEM** Variables Probe $\Gamma(x_1, x_2, \omega) = e^{-\alpha \frac{\omega|\xi|}{U_c}} e^{-\beta \frac{\omega|\eta|}{U_c}} e^{-\beta \frac$ **FMBEM / H-Matrix BEM** Acoustic Contributions **Functions** Diffuse Field / Blocked Pressure / Duct Modes Frequency Response

Restricted © Siemens AG 2018

Simcenter 3D Acoustics

SIEMENS

Simcenter 3D Acoustics Technology View

Simcenter Acoustics – ATV (Acoustic Transfer Vector) Set

ATV example Radiation of a gearbox

SC Acoustics – FEMAO

- Auto-adapting (f) fluid element order
- Leaner models in pre-processing
- Faster at lower frequencies
- More efficient at higher frequencies
- 2 to 10 x faster compared to standard FEM

FEM mesh

FEMAO mesh

Less DOF

required for

FEMAO

Optimal DOF size over all frequencies

 $\log(f)$

Simcenter Acoustics for Machine Noise Radiation Process View

Geometry preparation	Meshing and Assembly	Structural- Acoustics Pre	Solving	Post-processing
Closing holes, removing blends, parts,	Mesh mating, bolt pre-stress, acoustic meshing	Load recipe for loading, Output requests, FSI	NX Nastran Vibro-Acoustics FEM AML / FEMAO / ATV SC Acoustics BEM	Both Vibrations and acoustics. Contribution analysis

What-if, optimization, feedback to designer

Simcenter Acoustics for Machine Noise Radiation Process View on an Electric Motor model

Orifice Noise and Shell Noise

Combined Acoustic and Vibro-Acoustic problems Intake ducting system with fluid mesh reach in- and outside

Pure Vibro-Acoustic Shell Radiation Intake manifold with separated meshes in- and outside

FEMAO example Prediction of acoustic transfer functions of an engine bay for pass-by noise

1 node, smp=8	SOL108 FEM AML	SOL108 FEMAO AML
Frequencies	100 – 2500 Hz	100 – 2500 Hz
Time forced response	97 min	22 min

Panel Transmission Loss Modeling Process using FEM AML

The AML is applied as absorbent BC for both reverberant and anechoic domains.

Only few elements required between panel and AML surface → LEAN and FAST Models

SIEMENS Ingenuity for life

Complex Option : Amplitu

10.489

9.560

8.631 7.703 6 774 5.845

4.916

3.987

3.059

2.130

1.201

[Pa(N/m^2)]

FEMAO Example Submarine (BeTTSi) Target Echo Strength

SUBMARINE STEALTH

TES: Target Echo Strength How much energy from an impinging SONAR signal is reflected?

Addressed with FEMAO up to few kHz

Simcenter 3D Acoustics Powertrain Applications

Gearbox Noise Radiation – From Design to Acoustic Response

Simcenter 3D Acoustics Key Capabilities Application, industry specific modeling

Application Specific Noise and Vibration analysis Efficiency in handling 'industrial, application specific data'

Load recipe

Restricted © Siemens AG 2018

Page 55

3D CAE for the digital twin

Best-in-class simulation modeling

Multi-discipline integration

Openness and scalability

Leading in system simulation

Leverage industry expertise

www.siemens.com/simcenter

Restricted © Siemens AG 2018

Realize innovation.