

Online-Seminar Sound Quality Engineering für die optimale Akustik Ihrer Produkte

Stefanie Fabian

Welcome

Stefanie Fabian PreSales Consultant Testing Solutions

phone: +49 (40) 23720534 mobile: +49 (1520) 3464954 email: Stefanie.Fabian@siemens.com

Unrestricted © Siemens AG 2019 Page 2

Sound Quality Process

Agenda:

Human hearing system – Psychoacoustics Binaural measurements Objective analysis - Sound quality metrics Subjective analysis - Jury Testing

Human hearing system -Psychoacoustics

Human hearing system

Time-averaging

Microphones measure instantaneous pressure fluctuations

The brain does not respond to the instantaneous pressure, instead it behaves like an integrator.

Psychoacoustics – Auditory range

Psychoacoustics - A-weighting

- Filter with similar attributes to ear
- Simple curve shape, attenuates low frequencies
- 1000 Hz no gain/attenuation, used for microphone calibrations

Equal loudness curves

Temporal effect

Page 10

Masking for 1200 Hz Sine Tone

Binaural measurements

How to acquire good signals to calculate sound metrics?

How to acquire good signals to calculate sound metrics?

Single microphone ?

How to measure binaural recordings?

G.R.A.S. 45BB KEMAR Head and Torso

Binaural measurements

- \checkmark Ideal for listening tests
- ✓ Stereo recordings
- ✓ Requires artificial head or a binaural headset
- \checkmark Can be used for direct replay
- Recorded data is automatically equalized for analysis

Accurate audio replay – Equalization

Replay equalization Adding the head and torso effect Removing the headphones effect

Objective analysis Sound quality metrics

Introducing sound quality metrics Groups of sound quality metrics

Level metrics	 Adapting recorded sounds to perception Loudness ISO532 (A and B), Loudness Stevens VII, Time Varying loudness,
Speech metrics	 To quantify speech intelligibility according to the environment Speech interference level, Articulation Index,
Modulation metrics	 Amplitude variation and harshness due to modulation Roughness, fluctuation strength
Annoyance metrics	 To quantify if the noise is disturbing or not Noise rating, noise criterion, balanced noise criterion, sharpness
Tonal metrics	 To quantify the perception of tonal components in real sounds Pitch, tonality, tone-to-noise ratio, prominence ratio

White goods – more than Sound Power

White goods		
Fridges	Operate all day – produce idle noise but during cooling, opening/closing of the doors. Main noise source: compressors and fans.	
Washing machines	Various operational conditions: Opening/closing sound, different spinning velocities, drying. Main noise source: rotating drum, valves, pumps	
Vacuum cleaners	Focus on loudness and annoyance. Depending on the design, the noise may be: mechanical (bearing/rotor), electromagnetic (magnetic force induced vibrations) or aerodynamic (fan).	

194 1

Commonly used sound quality metrics

- Loudness
- Spectral analysis
- Modulation analysis
- Tonality
- Sharpness

Vacuum cleaner – why do we need Loudness?

Sound Pressure Level and Sound Power are important, but sometimes not enough

Loudness takes into account the aspects of human hearing and is more representative of the subjective preference

Unrestricted © Siemens AG 2019 Page 20

Loudness

Loudness is a psychoacoustic parameter, that maps the human perception of the volume of acoustic signals to a linear scale

The metric of Loudness takes into account:

- Frequency
- Level
- Hearing threshold
- Temporal effect
- Masking

Page 21

Hearing threshold

1 sone is 40 phones is 1 kHz @ 40 dB sine tone

Door slam – frequency content

Unrestricted © Siemens AG 2019

Page 22

Washing Machines – how to choose the best design variant?

Sound Quality analysis is often the task of **striking the balance**. A fix of the valve may decrease loudness, but affect the sharpness.

Sharpness

Sharpness is a measure of the high frequency content of a sound; the greater the proportion of high frequencies the 'sharper' the sound.

1 acum iS as *sharp* as a 1 kHz @ 60 dB band of +-80 Hz width

This metric is standardized: **DIN 45692** Multiple methods exist: Zwicker & Fastl, von Bismarck, Aures (includes Loudness)

Aviation: Siemens e-aircraft

Unrestricted © Siemens AG 2019 Page 25

Siemens PLM Software

Articulation Index

Articulation Index – How well is speech understood in the presence of the analyzed sound. Analysis is done in 1/3 Octave bands

Modulations

Phase shift between signals causes modulation in amplitude – these can be often perceived as annoying

Sounds which vary in amplitude "slowly" over time

- Electric Motor "warble"
- Exhaust/Intake "Growl"
- Aircraft Turbo Props
- Cooling fan and engine running at same speed

Roughness

SIEMENS Ingenuity for life

Unrestricted © Siemens AG 2019

Page 28

Prominence Ratio

Prominence Ratio Maps

Prominence Ratio

Customer actuated sounds

Customer actuated sounds

Door closure Transient, impact type of sounds. Play a significant role in the sound quality image of the complete vehicle.

Typical noise problems

- Hollow sound when closing
- Multiple impact sensation
- Bad sound quality image, not robust
- Ringing

Commonly used sound quality metrics

- Time Varying Loudness
- Time Varying Sharpness
- Ringing time the sound takes to converge back to the background level
- Wavelets

Wavelets

Traditional FFT methods do not work well on transient events:

- Good Time Resolution \rightarrow Bad Frequency
- Good Frequency Resolution \rightarrow Bad Time

Wavelet analysis uses filtering and flexible FFT settings to achieve the best results of the complete frequency range. It is best suitable for short, transient sounds

SIEMENS

Ingenuity for life

Wavelet

Siemens PLM Software

Introducing sound quality metrics Groups of sound quality metrics

Level metrics	 Adapting recorded sounds to perception Loudness ISO532 (A and B), Loudness Stevens VII, Time Varying loudness,
Speech metrics	 To quantify speech intelligibility according to the environment Speech interference level, Articulation Index,
Modulation metrics	 Amplitude variation and harshness due to modulation Roughness, fluctuation strength
Annoyance metrics	 To quantify if the noise is disturbing or not Noise rating, noise criterion, balanced noise criterion, sharpness
Tonal metrics	 To quantify the perception of tonal components in real sounds Pitch, tonality, tone-to-noise ratio, prominence ratio

Subjective Analysis Jury Testing

From subjective to objective

Calculate sound quality metrics OBJECTIVE ANALYSIS

mathematical formulation that describes well the "average person" psychoacoustic perception of the noise

"average" person ?

How to find good metrics ?

Try to find OBJECTIVE functions (metric) that correlate well with the different SUBJECTIVE perceptions

Unrestricted © Siemens AG 2019 Page 36

From subjective to objective

Calculate sound quality metrics OBJECTIVE ANALYSIS

mathematical formulation that describes well the "average person" psychoacoustic perception of the noise

Page 37

Subjective analysis – Jury Testing

Understand what the customer thinks about the sound of your product

Test procedure

Group Mode

Group of Jurors participates in the test at the same location and time. Answers are sent through wireless or cable connection.

Individual Mode

One Juror at a time sits in front of the computer and participates in the test.

All decentralized results can be analyzed together.

Jury Testing

Use sounds measured with Testlab or imported from an external source Support for A/B comparison, Semantic Differential and Category Judgement with statistical questions and reference answers

Connect to an unlimited number of Jurors and watch their answers in real time

Improve result quality with automatic checks on concordance and consistency 1-click export to Excel to further analysis

Thank you!

Stefanie Fabian PreSales Consultant Testing Solutions

phone: +49 (40) 23720534 mobile: +49 (1520) 3464954 email: Stefanie.Fabian@siemens.com

https://www.plm.automation.siemens.com/de/products/lms/testing/

Realize innovation.