
Siemens Digital Industries Software

siemens.com/swdesigner

Capital Software
Designer
Applying an architecture-driven approach to
onboard software design

Executive summary
Are you struggling with increasing onboard software volume and quality,
a large number of variants and time-to-market pressure?

This white paper reviews market trends that are transforming embedded
software development in the automotive industry from an activity owned
mostly by suppliers to a shared responsibility between original equipment
manufacturers (OEMs) and suppliers.

This digital transformation requires different processes and dedicated
process support tooling. This white paper describes the digital transforma-
tion challenge and suggests an architecture-driven approach for onboard
software design based on the functionality of Capital Software Designer.

http://www.siemens.com/swdesigner

White paper | Capital Software Designer

Abstract

The market trends in the automotive industry point
towards connected, increasingly autonomous, highly
customized, electric and networked vehicles that are
perceived by younger generations more as “tablets on
wheels” than as traditional vehicles. These vehicles are
expected to be extensible over their life through app
purchases and installations, and offer passengers
added-value services that are based on networks (see
figure 1). In addition, time-to-market pressure keeps
building, and product complexity frequently leads to
defects that aren’t detected until late in the process
when they are more expensive to fix, thus diminishing
the company’s profit.

Although software was used to run subordinate, low-
level embedded control and entertainment functions in
the past, today it is used to: perceive and categorize its
environment, coordinate the driving process in
advanced driver assistance functions, provide telemetry
data to its manufacturer, receive over-the-air updates,
and obtain high levels of authority over route planning,
engine, gears, brakes and steering. In other words,

manufacturers are using software to take more respon-
sibility for the driving process. Classically clear-cut
boundaries between infotainment and vehicle operat-
ing are blurring.

Consequently, a collection of completely new functions
increases the volume of onboard software by orders of
magnitude. A large portion of this software is critical for
safety. Connecting vehicles to the internet opens it up
to security threats, compromising vehicle integrity and
passenger confidentiality and safety. Due to constraints
regarding weight, power, heat transfer and cabin space,
it is not possible to continue adding functions by adding
more electronic control units (ECUs). Thus, the industry
will see a consolidation of software functions for large,
multi-core ECUs. As specified by AUTOSAR, dynamic
updates and extensions require a departure from static
ECU images. Instead, manufacturers will need to move
toward a dynamic architecture more resembling gen-
eral-purpose information technology (IT) systems, as
specified by AUTOSAR Adaptive1.

Figure 1: Megatrends transforming the automotive industry.

Source: IDC Source: Bloomberg Source: BI Intelligence Source: McKinsey and Company Source: Strategy&

56% of new car buyers
would switch to a different
brand to get the technol-
ogy and feature the want

$1.5 trillion in revenue
from mobility and connec-
tivity services by 2030

10 million (semi) autono-
mous cars on the road by
2020

200+ new electric and
hybrid vehicle modles in
the next three years

By 2020, the digital
unitverse will reach 44
zettabytes – a 10-fold
increase from 2013

Impact on
All industries

Impact on
Mobility industry

Impact on
Automotive industry

Impact on
Automotive industry

Impact on
Automotive industry

White paper | Capital Software Designer

Black-box paradigm
This trend contradicts the traditional approach in which
most embedded onboard software has been developed
and integrated by suppliers into components or subsys-
tems. Acquiring and integrating engines, gearboxes,
heating, ventilation and air conditioning (HVAC) sys-
tems, seats and lighting systems are examples of such
black-box systems. Integration happens simultaneously
in multiple domains, such as mechanics, thermal,
hydraulics, electrical, electromagnetic interference and
buses. In this paradigm, embedded software is shipped
as a nearly invisible part of the supplied subsystem, and
it is not supposed to be frequently updated. Onboard
software in this paradigm interacts with other onboard
software using well-defined, controlled bus signals. The
black-box paradigm has allowed OEMs to focus on
defining bus segments, packages and signals, but has
also led to a proliferation of ECUs in vehicles, creating
problems in terms of weight, consumed cabinet vol-
ume, heat and power consumption.

Gray-box paradigm
A gearbox designed by a supplier will deliver its soft-
ware not as a dedicated embedded control unit, but as a
binary executable the OEMs will integrate into a large-
scale ECU. This change in technology has a strong
impact on the process organization between OEMs and
suppliers. OEMs are suddenly required to specify, order,
integrate and validate software they had previously not
seen. This a gray-box paradigm, as the OEM will typi-
cally not develop the implementations. This process
change is an example of digital transformation, as
opposed to digitalization; see the inset box on the right.

Migrating towards the gray-box approach requires
OEMs to take ownership of software requirements and
define software architectures, timing and memory
needs; provide unambiguous implementation

specifications and acceptance criteria to suppliers;
select and configure basic software layers, and sched-
ule, integrate, build, verify, validate and qualify deliv-
ered source code on a large scale. Since supporting the
interaction with suppliers becomes tighter in the grey-
box acquisition paradigm, the aerospace industry refers
to it as the extended enterprise2. Adoption of this para-
digm in the automotive industry is well documented in
the contemporary literature3.

Developing onboard software in the extended enter-
prise requires adequate tool support for connecting to
typical application lifecycle management (ALM) systems
such as Polarion ALM™ software. The same is true for:

• Connecting software variability to the product lines

• Specifying systems and software requirements,
functionality and quality of service

• Describing software architecture and its needed
functional and timing properties

• Creating supplier design specifications and integrating
delivered software artifacts

• Verifying software compliance with specified
properties

• Validating the software in its operational context

• Qualifying software for production use

• Reporting all results to the connected ALM system

Finally, large legacy code bases containing a company’s
valuable experience needs to be considered, as few
projects are start from scratch.

Challenges in embedded automotive software.

Digital transformation
Adopting digitalization has enabled companies to
migrate existing and well-established processes from
paper-based artifacts to digital artifacts running on IT
infrastructure without changing processes. Digitalization
has brought added value since with digital artifacts it is
easier to identify versions, re-vise, archive and search
compared to paper artifacts. To a large extent, digitaliza-
tion has preserved the relationships between product
designers, manufacturers and their suppliers. Digital
transformation is about realizing all the opportunities
digital technologies have to offer, including processes
and business models4.

Speed

Volume

Variability

Quality

White paper | Capital Software Designer

Using Capital Software Designer enables you to defuse
the potentially negative effects of increased software
volume, faster time-to-market, variant richness and
demand for higher quality by taking a uniquely compre-
hensive, architecture-driven, model-based approach to
embedded software design. It is tailored to the needs of
the extended enterprise, facilitating collaboration and
giving developers complete freedom of choice in their
development environment.

Enabling the extended enterprise
Capital Software Designer supports onboard software
design in the extended enterprise, from software specifi-
cation and qualification to tightly integrated services
targeting software engineering process groups of the
Automotive Software Process Improvement and
Capability Determination (A-SPICE) model5, (see figure
2). A rich architecture model is the core and single
source of truth for all these activities. OEMs must master
at least the higher-level software engineering (SWE)
process groups SWE.1, SWE.2, SWE.5, and SWE.6.
Suppliers need to master SWE.3 and SWE.4, but their
responsibility may include the higher levels as well,
depending on the scope of their supplied units.

Architecture-driven design

Capital Software Designer is focused on processes
SWE.2 for software architecture design, SWE.4 for soft-
ware unit verifications and SWE.5 for software integra-
tion. It integrates with SWE.1 for software requirements
analysis and SWE.6 for software qualification tests
through an integration with Polarion ALM, and with
software qualification.

Frontloading defect detection and removal
Architecture becomes useful if it is rich enough to be
analyzed before the first line of implementation code
has been written to detect inconsistencies in the design.
To this end, Capital Software Designer provides data
types enriched by physical units, data-flow architecture
enriched by formal contracts, and block annotations
expressing timing needs. Additionally, all relevant arti-
facts are variant-aware. An adequately enriched archi-
tecture model becomes analyzable for contract consis-
tency and how well it can be scheduled before the first
line of code is written. Formal methods based on the Z3
model checker (open source software developed by
Microsoft) are employed to provide mathematically
sound and dependable analysis results.

Figure 2: Key software engineering process groups of the Automotive
SPICE model.

External development

SWE.1

Software requirements
analysis

SWE.6

Software qualification tests

SWE.5

Software integration and
integration tests

SWE.2

Software architecture design

SWE.3

Software detailed design and
units construction

SWE.4

Software unit verifications
Integration and V&V

Automotive SPICE process reference model

White paper | Capital Software Designer

With these capabilities, specified software is more likely
to be right the first time and need fewer iteration loops
between specification and implementation teams.

Delivering software quality
To address OEM and supplier needs, it is necessary to
capture legacy code, typically written in the C program-
ming language, as well as existing descriptions of archi-
tectural information, which are expressed, for instance,
in Systems Modeling Language (SysML), AADL or the
Simulink® environment. These legacies need to be
integrated with new code driven by model-based devel-
opment, and verification, validation and qualification
steps. Capital Software Designer supports all these
steps, regardless how the source code was created.
Apart from unit testing mechanisms and integrating
with best-in-class simulation tools, Capital Software
Designer enables user to leverage formal methods
provided by the C bounded model checker6 (CBMC) to

reliably check whether delivered implementation code
complies with the block contracts. If defects occur,
Capital Software Designer is used to create human-
readable examples demonstrating how the defect can
manifest itself. This information is ultimately useful for
developers to remove the defect.

Capital Software Designer services
Figure 3 describes key services that address the pains
expressed in figure 1 and enable efficient onboard
software engineering in the extended enterprise. The
services for imports, architecture enrichments and
executable specification export pertain to clients who
design and integrate onboard software into their prod-
ucts. The same pertains to integration, verification,
validation and target deployment services. The code
realization is executed by suppliers, who may belong to
the same organization as the client, or to an external

Figure 3: Services needed for onboard software development in the
extended enterprise.

Integrate

C-Code

Simulink
imp.

Validate

FMI

Simulink

SWE.2

Software architecture design

Capture

Req.

Simulink

SysML

AADL

C-Code

Design

Data

Units

Contract

Variant

Timing

AUTOSAR

Specify

C-Shell

Simulink
shell

SWE.3
Software detailed design and

units construction

Openness

Verify

Test

Formal

Compliance
verifications

Supplier

AUTOSAR

Simcenter
Amesim

Functional
levels

Deploy

AUTOSAR

Arduino

STM32

eFMU

SWE.4

Software unit verification

SWE.5

Software integration verification

Capital
Software Designer

System
integration

White paper | Capital Software Designer

organization. Note the words original equipment manu-
facturer and supplier are not used here as the client/
supplier pair is more generically applicable to supply
chains of arbitrary length.

Typical design scenarios for onboard software
This section explains two typical usage scenarios for
onboard software design. One starts from C legacy
projects and adds new software functions that are
handwritten in the C programming language. The other
captures legacy architecture models that are improvised
using Simulink and brings in new functionality to be
developed in model-based fashion.

Of course, mixed scenarios involving C legacy code and
new functions in model-based paradigm, which contain
mixed implementation paradigms for new functions,
also appear in practice and are supported by Capital
Software Designer.

The details of capabilities in each service group are
explained in subsequent sections.

C legacy projects with new functions in C
Most automotive OEMs and suppliers have large quanti-
ties of C legacy code that work and should be re-used,
while the organization is moving gradually toward a
model-based software development paradigm for rea-
sons explained in section 1. The first step in the migra-
tion is to import, analyze, understand and refactor C
legacy code, as highlighted as a first step in figure 4.

In the second step, the data-flow architecture is to be
derived in a semi-manual way from the legacy code, so
architecture enrichments from physical units, contracts
and timing needs as well as associated upfront analy-
ses, can be used when they become available. The
original legacy code is retained and linked to the
architecture.

New software starts as an architecture model, and its
implementation by internal development teams or
external suppliers is federated with executable specifi-
cations such as rich C shell templates (figure 4).

Returning the templates with filled implementation,
integration checks are executed on the side of the OEM,
followed by unit tests, formal verifications and closed-
loop validations.

Figure 4: Using Capital Software Designer for a manual C
programming-based scenario for onboard software design.

Integrate

C-Code

Simulink
imp.

Validate

FMI

Simulink

SWE.2

Software architecture design

Capture

Req.

Simulink

SysML

AADL

C-Code

Design

Data

Units

Contract

Variant

Timing

AUTOSAR

Specify

C-Shell

Simulink
shell

SWE.3
Software detailed design and

units construction

Openness

Verify

Test

Formal

Compliance
verifications

Supplier

Capital
Software Designer

AUTOSAR

Simcenter
Amesim

levels

Deploy

AUTOSAR

Arduino

STM32

eFMU

SWE.4

Software unit verification

SWE.5

Software integration verification

levels
Functional System

White paper | Capital Software Designer

Simulink based projects
Some organizations have been capturing architecture
information in Simulink using empty subsystems to
indicate data-flow structure. Such descriptions can be
used to populate Capital Software Designer data-flow
diagrams, which are then available for further enrich-
ment as described in figure 5.

New software starts as an architecture model. Its imple-
mentation by internal development teams or external
suppliers is federated with executable specifications as
rich Simulink templates (figure 5). These templates are

Figure 5: Using Capital Software Designer for a model-based development
scenario for onboard software.

Integrate

C-Code

Validate

FMI

Simulink

SWE.2

Software architecture design

Capture

Req.

Simulink

SysML

AADL

C-Code

Design

Data

Units

Contract

Variant

Timing

AUTOSAR

Specify

C-Shell

Simulink
shell

SWE.3
Software detailed design and

units construction

Openness

Verify

Test

Formal

Compliance
verifications

Supplier

AUTOSAR

Simcenter
Amesim

Functional
levels

Deploy

AUTOSAR

Arduino

STM32

eFMU

Simulink
imp.

SWE.4

Software unit verification

SWE.5

Software integration verification
Capital

Software Designer

System
integration

essentially empty systems that contain only ports with
the correct name and data type.

Implementation is then conducted externally in
Simulink. The production code is obtained from the
Simulink models using off-the-shelf code generators
such as Embedded Coder or dSPACE TargetLink.

The generated C code is then subjected to integration
checks, followed by unit tests, formal verifications and
closed-loop validations.

White paper | Capital Software Designer

Enriched architecture frontloads error
detection and drives implementation

Rich architecture is the key to frontloading detection of
design errors. Capital Software Designer enrichment
covers block interface-type systems, physical units, con-
tracts and timing needs. Furthermore, the architecture
drives open implementation using the paradigm and
language of the user’s choice. Figure 6 summarizes these
capabilities, which are further explained in this section.

Import capabilities
Moving C legacy code to a model-based paradigm is a
challenge frequently encountered in the industry (see top
left of figure 6). Capital Software Designer derives the call
graph from C source projects and displays the call graph
to the user in a navigable way.

Apart from C legacy, users may have legacy architectural
information available in different sources such as Simulink
models, UML/SysML models, AADL and AUTOSAR. Capital
Software Designer offers importers for all these sources

and can merge the imports with existing architecture
models.

Architecture enrichment and analysis
Architecture modeling is often seen as a documentation
activity only, which is a wasted opportunity. Architecture
can drive implementation, verification and validation if
the architecture model is sufficiently rich.

Data-flow language is the core of the embedded software
architecture model (see figure 7). In the data-flow para-
digm, software functions are allocated to blocks. Capital
Software Designer supports re-use and composition with
block interfaces and abstract blocks, and hierarchical com-
position with composite blocks.

Blocks exchange data through ports, which have rich type
and physical unit information associated with them in
Capital Software Designer.

Figure 6: Capital Software Designer provides rich onboard software
architecture modeling capabilities.

Matlab
Simulink

Autosar

SysML

White paper | Capital Software Designer

Contracts are the formal requirements associated with a
software block and are expressed in terms of pre- and
post-conditions. Contracts are added to the block inter-
faces. Analyzing the consistency of contracts between all
blocks on an architecture model frontloads the detection
of design errors to the early stages, even prior to the
implementation of the first application function. Note
that at the level of block interface modeling, input and
output units can be made generic, which means their
concretization comes during the instantiation of blocks
following an interface.

Timing needs of software functions is another architec-
ture enrichment area supported by Capital Software
Designer. From the period, offset and deadline properties,
as well as statistics of function execution length, the
software can be used to schedule all functions on a dia-
gram, which can be assessed prior to the target
scheduling.

External or legacy architecture models can be imported
into Capital Software Designer, which supports various
tools and languages, including SysML. These models can
then be moved to rich architecture, thus enabling you to

edit, refactor, enrich and analyze them. In addition to the
data flow, alternative SysML-like block definition diagram
(BDD) views on the architecture are also provided, making
it easier for system engineers to transition from system
architecture to a detailed software architecture.

Test definition is another activity that belongs in the early
stages of architecture definition.

Openness for implementation
Onboard software architects cannot simply hand over
their work products to developers. They need to com-
municate the rationale behind their architecture, remain
approachable to change requests through their compa-
ny’s channels and processes, and assess returning imple-
mentation work products. All this holds true regardless of
where the development team is located, which may be
another department in their company or at a supplier.

To preserve the openness of the chosen implementation
paradigm, architectural elements are exported as rich
implementation templates to be shared with suppliers. A
meaningful solution honors the fact the appropriate
implementation paradigm varies depending on content.

Figure 7: Block architecture with block contract shown for the sum block.

White paper | Capital Software Designer

For example, model-based design with automatic code
generation is frequently appropriate to implement signal
processing and control algorithms, whereas hardware
drivers, ECU state management and diagnostic functions
are often best when they are handwritten.

Capital Software Designer supports the simultaneous use
of all these paradigms in the same project. The architec-
ture exporters currently support the following program-
ming and modeling languages:

• C

• Simulink

In case the user selects C language, code and header files
with all necessary information such as statements, mac-
ros and function interfaces are generated. Rich comments
trace the code to Capital Software Designer blocks,

explain the available data types; their units and meaning,
as well as the block contracts the developers must obey.
The function bodies contain special comments that pro-
tect handwritten implementations when re-exporting the
templates due to interface changes.

When Simulink is the implementation tool of choice, the
template comes in the form of a Simulink model repre-
senting the blocks, ports and connections. In both cases,
templates are enriched and linked to architecture ele-
ments to allow change management and efficient
integration.

In addition, Capital Software Designer makes it easy to
package implementation templates with associated
dependencies with internal or external suppliers.

White paper | Capital Software Designer

Integrate, verify, validate, qualify:
sanitizing supplied code

Rich architecture is leveraged to drive the integration,
verification, validation and qualification stages of onboard
software development. Capital Software Designer capa-
bilities include sanity checking of delivered source code
based on the architecture model, unit testing, formal
verifications, static analyses, timing analyses, integration
with Polarion ALM for test management and requirement-
driven verification, and system validation using closed-
loop simulations as summarized in figure 8.

Integration capabilities
Shipped code may or may not adhere to the interface
specifications provided in the implementation templates.
The first integration step is therefore an automated check
to determine whether the supplied code adheres to the
interfaces. Capital Software Designer identifies integra-
tion issues arising from broken interfaces.

Test-based verification capabilities
After checking the interface accuracy of shipped imple-
mentations, functional correctness is the next thing to
check. Testing is the dominant method in functional
verification in practice today. Capital Software Designer
supports execution of block unit tests and reporting of
test results to Polarion ALM. Furthermore, Capital
Software Designer supports automatic generation of test
vectors to achieve full test coverage according to popular
coverage metrics, such as branch coverage and modified
condition/decision condition (MC/DC) coverage. Thereby,
Capital Software Designer leverages the enriched archi-
tecture in the test and verification stage.

Figure 8: Integration, verification, validation and qualification capabilities
of Capital Software Designer.

WCET
Dead-code
Unreachable
code

Component level test and
verification

Export a
shell for C-
or Simulink

Integrate
the code

Use solution of choice for
C-code or model based implementation

Export software
models for
Simcenter
Amesim

Submodel Editor,
Simulink and

FMUs

Test and verify
at the

component
level

Open-loop unit test

Closed -loop function validation

Formal and static analysis

Schedulability analysis

Polarion ALM test orchestration

Requirement driven verification

Matlab
Simulink

Autosar

SysML

White paper | Capital Software Designer

Formal verification capabilities
Although testing is popular and well understood, having
data-flow contracts in a software architecture opens more
powerful possibilities based on formal analysis methods.

Capital Software Designer makes the use of formal meth-
ods easy; for example, to prove the compliance of a block
implementation with its contracts. If violations are pos-
sible, they are reported as counter examples. These sam-
ple executions of the program are helpful for the devel-
oper to understand and repair the underlying
implementation errors. Furthermore, it is possible to
analyze for robustness of floating-point arithmetic and
unreachable code with static analyses.

The formal contract checking capability is available for
software with architecture that is part of Capital Software
Designer. The static analyses are applicable both for code,
which has architecture that is part of Capital Software
Designer, and for external code, such as legacies that
have not been imported, libraries and firmware stacks.

Closed-loop validation capabilities
Capital Software Designer supports closed-loop simula-
tions of its onboard software according to the software-
in-the-loop (SiL) paradigm by integrating with two simula-
tion platforms:

• Simcenter Amesim™ software

• Simulink

These external tools control the simulation process. The
Capital Software Designer model closed-loop harnesses
and test cases generate the external closed-loop simula-
tions and presents the simulation results.

Code qualification capabilities
Prior to production use, it is also important to know
whether source code meets internal coding styles, follows
coding best practices, contains known security issues, and
complies with functional safety standards. Capital
Software Designer integrates with best-in-class code
scanners for that purpose.

White paper | Capital Software Designer

This white paper summarizes the digital transformation
challenges facing the onboard software sector in the
automotive and other industries. Driving supplier-based
implementation, integration, verification and validation
from semantically rich architecture enables manufactur-
ers to rapidly deliver high-volume, variant-rich and
high-quality onboard software.

We have discussed two typical development scenarios
covering both C legacy-intense situations and model-
based development situations.

Capital Software Designer supports the digital transfor-
mation of onboard software design organizations with
its software architecture backbone and integration,
verification and validation capabilities, leveraging the
functionality of Simcenter system simulation solutions
as well as Polarion ALM.

Conclusion

References
1. Jakobs, Christine, and Tröger, Peter. Quo vadis, AUTOSAR 2017. http://

dblp.uni-trier.de/db/conf/gi/gi2017.html (accessed 8 15, 2018).
2. Pardessus, Thierry. “Concurrent engineering development and practices

for aircraft design at Airbus.” Proceedings of the 24th ICAS Conf.
Yokohama, Japan, 2004.

3. Guetta, Olivier, Ishigami, Kazuhiro and Coutenceau, Emmanuel.
“Renault Nissan new Software Strategy.” Proceedings of ERTSS 2017.
Toulouse, France, 2017.

4. Matt, Christian, Hess, Thomas and Benlian, Alexander. “Digital
Transformation Strategies.” Business & Information Systems Engineering
57, no. 5 (2015): 339-343.

5. Mueller, Markus, Klaus Hoermann, Dittmann, Lars and Zimmer, Joerg.
Automotive SPICE in Practice: Surviving Implementation and
Assessment. Rocky Nook, 2008.

6. University of Oxford. CBMC Model Checker. 07 22, 2018.

www.sw.siemens.com
© 2019 Siemens. A list of relevant Siemens trademarks can be found here.
Other trademarks belong to their respective owners.

76422-C5 8/19 C

About Siemens Digital Industries Software
Siemens Digital Industries Software, a business unit of
Siemens Digital Industries, is a leading global provider
of software solutions to drive the digital transforma-
tion of industry, creating new opportunities for manu-
facturers to realize innovation. With headquarters in
Plano, Texas, and over 140,000 customers worldwide,
we work with companies of all sizes to transform the
way ideas come to life, the way products are realized,
and the way products and assets in operation are used
and understood. For more information on our products
and services, visit www.sw.siemens.com.

14

Siemens Digital Industries Software

Headquarters
Granite Park One
5800 Granite Parkway
Suite 600
Plano, TX 75024
USA
+1 972 987 3000

Americas
Granite Park One
5800 Granite Parkway
Suite 600
Plano, TX 75024
USA
+1 314 264 8499

Europe
Stephenson House
Sir William Siemens Square
Frimley, Camberley
Surrey, GU16 8QD
+44 (0) 1276 413200

Asia-Pacific
Unit 901-902, 9/F
Tower B, Manulife Financial Centre
223-231 Wai Yip Street, Kwun Tong
Kowloon, Hong Kong
+852 2230 3333

http://www.sw.siemens.com
https://www.plm.automation.siemens.com/global/en/legal/trademarks.html
http://www.sw.siemens.com

