
Executive summary
This paper describes an approach to vehicle system design that uses stan-
dardized, hierarchical functions as a single level to describe electrical,
electronic, and software content. Domain-specific implementation levels
are then generated in a synthesis process, and evaluated using suitable
metrics. The focus is on rapid, iterative optimization and on cross-domain
architecture evaluation and validation

Hans-Juergen Mantsch, Siemens PLM Software

Siemens PLM Software

siemens.com/electrical-systems

A holistic approach to
vehicle system design

White paper | A holistic approach to vehicle system design

2Siemens PLM Software

Function-based system engineering

Functional approaches to describing and developing
system architectures are often based on domain-specific
languages derived from UML, such as EAST-ADL or
SysML. At the same time, the technical content descrip-
tion (components of the system) appears in various
forms and levels of abstraction (for example feature,
activity, sequence, and/or status diagrams), and then
suitably mapped for implementation.

This approach requires considerable effort and is less
suited to architecture evaluation than to detailed docu-
mentation. Indeed, to be able to make meaningful
technical and financial evaluations of the overall system
architecture, each of the individual levels must be speci-
fied until a high degree of detail is achieved. In the
subsequent mapping, the effort increases as the square
of the level of detail: the number of artifacts within the
individual levels, for example.

If the calculation of the corresponding metrics is not
sufficiently agile, evaluation of a change in function
allocation – for example of a software component on a
particular control unit – cannot take place soon enough
to provide truly meaningful results for each individual
choice to be evaluated.

Overall, this significantly hampers architecture studies.
The provision of the necessary data and calculations of
the desired metrics can, in certain circumstances, take
more time than planned for the entire project!

Functional modeling
The alternative approach described here uses standard-
ized, hierarchical function models combined on a single
level to describe the technical content of system architec-
ture. In this context, standardized means that individual
functions can be separated from their eventual imple-
mentation as a hardware, driver, or software component.
Instead of distributing the models across various, in some
cases redundant, levels the individual domain-specific
descriptions can be combined within a single functional
abstraction, thereby eliminating the lengthy mapping
process. Communication between individual functions is
via signals that can be standardized as either software,
electrical, or bus signals. All artifacts can be linked with a
set of rules from a detailed options/variants model. The
component models for hardware, software, and electrical
and network communication can thereby be integrated,
and their semantic dependencies checked and validated
concurrently using design rules checks.

Figure 1: SysML diagram types (taxonomy), source Wikipedia.

New diagram
type

Modified from
UML 2.0

Same as UML 2.0

Parametric
diagram

Requirement
diagram

Internal block
diagram

Block definition
diagram Activity diagramPackage diagram

SysML diagram

Structure diagram Behavior diagram

Sequence diagram State machine
diagram Use case diagram

White paper | A holistic approach to vehicle system design

3Siemens PLM Software

In this way it is possible to capture the technical, vari-
ant-driven content of the downstream implementation
domains (hardware, software, network, and electrical)
as early as the functional abstraction level, and to vali-
date this content across all variants.

To illustrate this approach, figure 3 shows a number
of functional blocks. Software functions (SW), driver

components (D), sensors (S), and actuators (A) are
described and displayed within a single abstraction
level. The signals between functions are shown
according to their required implementation in the
colors red (SW), green (electrical signals on a PCB),
orange (electrical signals in a wiring harness), and
blue (signals on a network).

Figure 2: Domain-specific processes and upstream functional architecture design.

Figure 3: Functional design.

SW SW

SW

SW

SW

D

D

D

D

D

D

S

S

A

A

A

A

Off-board
components

Model based
design

Network
architecture

Electrical
signals

PIN-Out

AUTOSAR SW
design

Network
signals

Variants

Hardware

Software
architecture

Network
architecture

Electric
schematic

On-board
components

Diagnostic and
calibration

Signal timing

Topology

Logical
schematic

coding and code
generation

Network variant
design

Electrical
components

Layout

Basic SW
configuration

Frame packing

Mechanical
design

Mechanic
design

Profiling

Analysis

Harness
design

Analysis

Testing

Testing

Service

Manufacturing
planning

Manufacturing
planning

Implementation proposal Hardware
PCB

Software

Network

EDS

Function design
and architecture

Capture function
models / feature

Integrate, embellish
and verify FMs within

Concord

Design and assess in
the context of the

whole (SE)
Function and signal

allocation - Synthesize
logical/physical -

Assess
forecast
versus
budget

Verify
integrated

FNs/
signals

• Requirements
• Feature plans
• Carry-over
• Functions models

• Add high-level function timing and event chain
• Add course signal size and timing
• Identify shared and independent objects

Logical architecture
at the platform level
(the product you sell)

Fu
nc

tio
na

l d
es

ig
n

so
lu

tio
n

MB HW ED NW SW

White paper | A holistic approach to vehicle system design

4Siemens PLM Software

In figure 4 the individual type allocations correspond to
implementation requirements for the downstream
platform. If a function is of the software type, this
means that the function is treated as a SW component
in the downstream allocation to a platform: it should be
allocated to a control unit and not to a purely electrical
component. Note also that some of the functions and
signals are optional, corresponding with the options/
variants model.

Functions can be organized hierarchically, and function
signals can both reference their originating functions (if
from an external functional design), and be made avail-
able across platforms and projects via a signal library.

Logical platform
If the functional designs are captured as described, the
downstream implementations (hardware and software,

serial bus systems, and electrical distribution) can be
created automatically, always respecting option/variant
relationships.

To do so, first a logical platform is defined. This can be
derived from a 3D model in the form of a physical topol-
ogy, but can also start as an abstract logical network
topology. Via the allocation of individual functional
components to an options/variants model, a logical
platform can encompass (in the example of automotive
engineering) an individual car, a range of cars, or all
possible derivatives of a car platform including the
variation in software, electrical systems, network, and
hardware. The same principle applies to trucks, offroad
vehicles, aircraft and complex electromechanical
machines such as industrial printers and medical equip-
ment. Indeed, an extended system-of-systems such as
an air defense system can be modeled in this way.

Figure 4: Function diagram with various functions, option allocations and
references on external function blocks or signals.

Vehicle status

Sgn_PTStatus

Sgn_PTSpeed
PassiveSafety

DARadarSensor
ActiveSafety ||
PassiveSafety

DARadarDistance
ActiveSafety ||
PassiveSafety

Safety

MatLab/
SimLink

ADAS

AUTOSAR

Sensor

Safety

DARadarDistance
ActiveSafety ||
PassiveSafety

Sgn_PTSpeed
ActiveSafety

ADAS_CalculateDistance
software

ADAS_RaiseDistanceWarning
software

Signal for Variant MM_High

Warn_LCD
Hardware

Warn_LED
Hardware

Actuator

Actuator

Radar hardware

ActiveSafety ||
PassiveSafety

ActiveSafety ||
PassiveSafety

PassiveSafety ||
ActiveSafety

MM_Low ||
MM_High

MM_High

Vehicle status

PTSpeedSignal

Variant PassiveSafety

PTSpeedSignal010
Variant ActiveSafety

DADistance
WarningLCD

MM_High

S SW SW A

DRV

White paper | A holistic approach to vehicle system design

5Siemens PLM Software

The individual nodes of the platform are standardized as
resources: electronic control units (ECUs) or line
replaceable units (LRUs), electric assemblies, and elec-
tricity or earth conductors. They can be coupled

Figure 5: Diagram with various software-type functions.

Figure 6: Platform architecture with the standardized function containers
(resources) and connection pathways (carriers).

electrically or via bus systems (CAN, LIN, Flexray,
Ethernet, ARINC 429 etc), or indeed by optical or radio
connections. These communication pathways are
referred to as carriers.

C

C

C C

C

C

ECU

ECU

F4_MMI
software

F5_BodyB
softwareF5_BodyA

software

F1_Powertrain
software

F2_Chassis
software

F3_Safety
software

F5_BodyC
software

F6_ADAS
software

White paper | A holistic approach to vehicle system design

6Siemens PLM Software

Functions are then allocated into the logical platform.
This can be done manually or automatically using rules.
While doing so the functions are interrogated as to their
type. For example, a software component is created
from a function of the SW type, and then allocated to a
control unit. The signals passing between functions are
assigned to carriers as software, electrical, or network
signals within the logical platform.

The resulting synthesis is the integrated implementa-
tion across the four domain types (hardware, software,
network communication, and electrical) of the func-
tional description. Semantic consistency can be ana-
lyzed in real time using design rule checks, and any
necessary warnings or error messages generated.

Synthesis

Figure 8: Rules for allocating functions and signals.

Figure 9: Sample diagram of synthesis implementation.

Figure 7: Rules for allocating functions.

A A A

 Do assign signal with attribute/property matching Max Latency<=10 to carrier

 Do allocate functions with attribute/property matching Name=.*_BodyFront.*

 Do allocate functions with attribute/property matching Frequency >=225

Component - ECU - Allocation Constraints

 Don’t allocate functions with attribute/property matching Type = Hardware

 Do assign signal with attribute/property matching PSF = .*_CAN23_.* to carrier

 Do allocate functions with attribute/property matching Role = Cluster Name

 Do allocate functions with attribute/property matching Maximum Latency <=0.005

 Don’t allocate functions with attribute/property matching Type = Power

 Cluster: BODY (5 of 5)

White paper | A holistic approach to vehicle system design

7Siemens PLM Software

Figure 10: Example metrics: object count, CPU utilization, network load,
and task scheduling.

As early as this synthesis process, metrics for technical
evaluation can be calculated. These metrics can be
configured to show a wide variety of information. For
example, for multiplex networks interesting metrics
include load, tolerance, and overhead. For the electrical
domain they include the number of wires, splices and
connectors, wire lengths, and bundle diameter. For
control units they include device weight, CPU load,
requirements for RAM, ROM, FLASH/EEPROM, PCB area
and volume power, and thermal dissipation. The metrics
are calculated from parameters attached to functions,
resources, and carriers: these parameters will often be
well known from previous implementations.

If a value is above a particular level, for example if the
forecast requirement for RAM goes beyond the budget
provided by the microprocessor, alerts will be issued via
the design rule checks or directly into the platform
architect’s graphical display. This helps the engineer
ensure the design is feasible.

Furthermore, not just technical metrics can be calcu-
lated. By extending the calculations project goals such
as cost, weight, headroom, reliability or re-use can also
be reckoned.

Metrics

Platform assessment ECU CPU utilization Network load ECU task margin

White paper | A holistic approach to vehicle system design

8Siemens PLM Software

Evaluation and optimization

Because evaluation using these metrics is done in real
time, ie when design decisions or changes are made,
this process is ideally suited to evaluating alternative
implementations (“architectures”), or indeed revised
functional content. Changes are immediately reflected
into the metrics, and alternative strategies can then be
studied. Issues of optimum functional partitioning,
electrical optimization, cost, and runtime optimization
can thus be addressed iteratively and interactively.

After the final evaluation, the results of the logical
platform synthesis are fed into the downstream,
detailed design process in each domain-specific format
such as ARXML, FIBEX, or KBL. The results of the archi-
tecture study phase can thus be re-used as implementa-
tion suggestions for future platforms. In the case of an
integrated design environment, data can of course be
passed directly to the appropriate applications.

Figure 11: Comparison of different expansion and optimization stages in terms of the object count, technical
evaluation, CPU, and network traffic measurements.

White paper | A holistic approach to vehicle system design

9Siemens PLM Software

The approach described in this paper uses the func-
tional abstraction to consolidate the various E/E
domains at a single level. This in turn allows rapid eval-
uation of implementation alternatives, while preparing
data for use in detailed design.

For such architecture evaluation and validation, existing
approaches based on UML or SysML-like meta-models
are less suitable, because of the technical effort and
knowledge needed. The related complexity allows virtu-
ally no scope for achieving the adequate or necessary
level of detail for a comprehensive evaluation in the
available time.

Commercial software based on the principles described
in this paper is available within Siemens PLM Software
product suite.

By contrast, the approach described uses a functional
abstraction in which the implementation-related data
and artifacts are combined into standardized, functional
models, instead of distributing them across different, in
some cases redundant levels.

As early as during the automated allocation to logical
platforms, the models can be iteratively validated for
feasibility of implementation and safeguarded with
corresponding technical and commercial metrics. The
result of the architecture process is implementation
suggestions for the downstream development processes
for software, network, electrical systems, and hardware.

Tying it together

Figure 12: Functional architecture design and assessment, and resulting
implementation proposals for downstream design flow.

Off-board
components

Model based
design

Network
architecture

Electrical
signals

PIN-Out

AUTOSAR SW
design

Network
signals

Variants

Hardware

Software
architecture

Network
architecture

Electric
schematic

On-board
components

Diagnostic and
calibration

Signal timing

Topology

Logical
schematic

coding and code
generation

Network variant
design

Electrical
components

Layout

Basic SW
configuration

Frame packing

Mechanical
design

Mechanic
design

Profiling

Analysis

Harness
design

Analysis

Testing

Testing

Service

Manufacturing
planning

Manufacturing
planning

Implementation proposal Hardware
PCB

Software

Network

EDS

Function

Platform

Fu
nc

tio
na

l d
es

ig
n

so
lu

tio
n

Siemens PLM Software

Headquarters
Granite Park One
5800 Granite Parkway
Suite 600
Plano, TX 75024
USA
+1 972 987 3000

Americas
Granite Park One
5800 Granite Parkway
Suite 600
Plano, TX 75024
USA
+1 314 264 8499

Europe
Stephenson House
Sir William Siemens Square
Frimley, Camberley
Surrey, GU16 8QD
+44 (0) 1276 413200

Asia-Pacific
Unit 901-902, 9/F
Tower B, Manulife Financial Centre
223-231 Wai Yip Street, Kwun Tong
Kowloon, Hong Kong
+852 2230 3333

siemens.com/plm
© 2019 Siemens Product Lifecycle Management Software Inc. Siemens, the Siemens logo and
SIMATIC IT are registered trademarks of Siemens AG. Camstar, D-Cubed, Femap, Fibersim,
Geolus, GO PLM, I-deas, JT, NX, Parasolid, Polarion, Simcenter, Solid Edge, Syncrofit,
Teamcenter and Tecnomatix are trademarks or registered trademarks of Siemens Product
Lifecycle Management Software Inc. or its subsidiaries or affiliates in the United States and in
other countries. All other trademarks, registered trademarks or service marks belong to their
respective holders.

77040-A4 3/19 Y

About Siemens PLM Software
Siemens PLM Software, a business unit of the Siemens
Digital Factory Division, is a leading global provider of
software solutions to drive the digital transformation of
industry, creating new opportunities for manufacturers
to realize innovation. With headquarters in Plano, Texas,
and over 140,000 customers worldwide, Siemens PLM
Software works with companies of all sizes to transform
the way ideas come to life, the way products are
realized, and the way products and assets in operation
are used and understood. For more information on
Siemens PLM Software products and services, visit
siemens.com/plm.

10

http://www.siemens.com/plm

