Zielkonflikte in der E-Maschinenentwicklung elegant lösen

Guillermo Zschaeck & Bernhard Scharinger

Unrestricted | © Siemens 2021 | 2021-05-12 | Siemens Digital Industries Software | Where today meets tomorrow.

Agenda

- Zielkonflikte in der Entwicklung von Elektroantrieben erkennen
- Lösungsansätze mit Motorsolve und HEEDS identifizieren
- Live Demo und Vorstellung des Workflows
- Zusammenfassung und Q&A

Guillermo Zschaeck

Senior Application Engineer, HEEDS Technical Team

- Customer support & training
- Support pre-sales/sales activities
- Support product management, development & marketing of HEEDS

Experience & Education

- 2016-2019 Siemens CT eAircraft, Thermal Management
- 2011-2016 ANSYS, Senior Consultant (CFD)
- 2007-2011 ANSYS, Application Engineer (CFD)
- 2005 MSc Chemical Engineering, Uni Erlangen, Germany
- 2000 BSc Chemical Engineering, Uni Caracas, Venezuela

Bernhard Scharinger

Portfolio Developer, Simulation & Testing Solutions

- Technical sales support
- Business Planning
- Marketing Initiatives

Experience & Education

- 2017-2019 Siemens DISW Presales Simcenter 3D
- 2014-2016 WINTERSTEIGER, Simulation Engineer
- 2009-2014 ZKW Group, Simulation Engineer
- 2008 DI(FH) Material Engineering, Wels, Austria
- 2002 HTL für Maschinenbau, Wels, Austria

Unrestricted | © Siemens 2021 | 2021-05-12 | Siemens Digital Industries Software | Where today meets tomorrow.

Simulation versus Design Space Exploration

Manual Simulation

Based on experience

Step-by-step, trial & error approach

Alternative Method

HEEDS – Focus on objectives

Targeted parameter modifications

Possible for a few parameters Time-consuming, requires experience

For large number of parameters No needs for special optimization knowledge

Simulation Strategy for Innovation

Case Study: eMotor for Robotic Arm

- Robotic arms are widely used in industry automation
- Improve eMotor performance
 - Maximize torque
 - Minimize mass of permanent magnets
 - Minimize torque ripple
- Change 22x geometric parameters
- External diameter & length are fixed

Modern Electric Motors Engineering Challenges

Operational Excellence	 Maximize power density and efficiency in a wide speed range Guarantee a robust and reliable operation Low Noise and Vibration (NVH), reduce torque ripple
Cost Reduction	 Reduce rare earth material usage Seamless collaboration among emag, thermal, structure and acoustics engineers
Innovation	 Improve integration with system Accelerate product development with digital twin framework

Objectives & Trade-Offs

- Some trade-offs are known for each discipline
- As complexity increases, trade-offs must be "discovered"

Unrestricted | © Siemens 2021 | 2021-05-12 | Siemens Digital Industries Software | Where today meets tomorrow.

Electric Motor Terminology Torque Ripple

Torque Ripple is one of the main cause of vibration & acoustic noise in e-motors

Simcenter Motorsolve Simulation Software

Software to design and analyze electrical machines

• Permanent magnets, induction, synchronous, brush-commutated

User-friendly interface and handling

- Flexible templates for practically any motor
- Pre- & Post-processing environment
- Automation capabilities

HEEDS Design Exploration Software

HEEDS automates and accelerates the exploration of a large design space

Useful for detailed component design as well as complex, multi-disciplinary system simulations

Driving Innovation

- Until now simulation was used for single evaluations of a design
- Now you specify goals and requirements for a design
- HEEDS searches for possible solutions in the design space

Discover Better Designs, *Faster!*

HEEDS Key Technologies

Case Study HEEDS and Simcenter Motorsolve

Challenge

- Maximize torque
- Minimize torque ripple
- Minimize magnet's mass

2D-FEM Simulation

 Brushless DC (BLDC) with Interior Permanent Magnets (IPM)

Design variables

• 22 design variables

Tools

- Simcenter Motorsolve
- HEEDS

Design Variables Overview Simcenter Motorsolve

General settingsAdvance Angle

Rotor

- Inner diameter
- Outer diameter
- Magnet width x3
- Magnet thickness x3
- Magnet orientation x3
- Bridge thickness x3
- Web thickness x3

Stator

- Slot depth
- Slot opening width
- Tooth tip thickness
- Tooth width

Model Modification & Automated Simulation

 The direct interface between HEEDS and Simcenter Motorsolve allows a simple model modification and automated simulation

Run

Extraction of Simulation Results

- HEEDS extracts available simulation results from Simcenter Motorsolve
- Data is transfer to subsequent tools in the workflow

Simcenter Motors	olve M	mcenter	1	HEEDS			Portal HEEDS
Motor Explorer 🚽 🗸		Base Design		Output Type	ŤΞ	Data	Value
) 🖻 🖬 🔓 🔊 (° 🖆 🛛 🔕 🔀	Torque (N·m)	15.1		Motor Results		Torque	Motion_analysis_Torque
ommands	RMS torque ripple (N·m)	9.4 > Performance Chart	> Performance Charts		RMS torque ripple	Motion_analysis_RMS_torque_ripple	
esions	Output power (W)	31.6		✓ Analysis Charts		Input nower	58 2171500930027
- sulta	Efficiency (%)	54.4	✓ Motion analysis			56.2171500550027	
esuits	RMS line-to-line voltage (V)	22.5	22.5 Row-	Paur union data		Output power	31.648306420063
 Hotor Results Performance Charts Cogging torque Back EMF Current Torque vs. speed Efficiency map Flux vs. current Air gap flux 	RMS line current (A)	1.5		KOW-WISE GdLd	-1	Efficiency	Motion_analysis_Efficiency
	RMS current density (A/mm²)	1.45 0.982	> PWM analysis	-	RMS line-to-line voltage	22.536527290376	
	Power factor			1111	PMS line current (A)	1 40000006010868	
	Torque per unit rotor volume (TRV) (kN·m/m ³)	14.2	H.2 00712		1111		1.49999990919000
	Airgap stress (N/mm²)	0.00712			1111	RMS current density	1.45258665727518
	Kt (torque over RMS line current) (N·m/A)	10.1				Power factor	0.98240278505589
	Hysteresis drag torque (N·m)	0.139				Torque per unit rotor volume (TRV)	14.2458147627652
	Loss - Total (W)	2.9E-06	Airgan stress			7 122007291292505-02	
	Loss - Winding (W)	26.3				Angeb succes	
- Force harmonics	Loss - Stator back iron hysteresis (W)	0.126			Kt (torque over RMS line current)	10.073969021341	
Analysis Charts	Loss - Stator back iron eddy current (W)			1111	Hysteresis drag torque	0.138929679683947	
	Loss - Stator teeth hysteresis (W)	0.155	.155 .00154 .0103			Electromagnetic viscous drag	2.90368184987862E-06
moudh analysis	Loss - Stator teeth eddy current (W)	0.00154				Loss Tatal	26 5699426720207
···· PWM analysis ···· D-Q analysis ···· Lumped parameters	Loss - Rotor back iron hysteresis (W)	0.0103				Loss - Iotal	20.3000430723337
	Loss - Rotor back iron eddy current (W)	0.000162				Loss - Winding	26.2752615499467
Generator Results	Loss - Rotor teeth hysteresis (W)					Loss - Stator back iron hysteresis	0.126143240435822
Thermal Charts	Loss - Rotor teeth eddy current (W)	0			Loss - Stator back iron eddy current (W)	7 3346729060077E-04	
	Loss - Magnets eddy current (W)	0.000176]			coss stator back non eddy current (w)	1.55401250000112-04

Process Automation HEEDS

Unrestricted | © Siemens 2021 | 2021-05-12 | Siemens Digital Industries Software | Where today meets tomorrow.

Unrestricted | © Siemens 2021 | 2021-05-12 | Siemens Digital Industries Software | Where today meets tomorrow.

HEEDS Demonstration

Unrestricted | © Siemens 2021 | 2021-05-12 | Siemens Digital Industries Software | Where today meets tomorrow.

Design Exploration

- Searched 350 design evaluations
- Fulfilled requirements for torque and torque ripple
- Maximized torque
- Minimized mass and torque ripple ratio

Design Improvements

- Best vs baseline design
 - Improved torque by 4%
 - Improved mass by 18%
 - Improved torque ripple ratio by 78%

Summary

- Discussed challenges in e-motor design
- Introduced HEEDS & Simcenter Motorsolve
- HEEDS' portals to CAE tools
- Demonstrated HEEDS capabilities for multi-objective optimization

Discover Better Designs, Faster

Q & A

