

The supremacy of lean FE models to solve flow-induced wind, fan and HVAC noise

SIEMENS Ingenuity for life

Unrestricted © Siemens AG 2019

Realize innovation.

? 🗛 🚛 👗 🚳 🗛 👪 🛤

Shift towards increased effort to reduce wind noise

Unrestricted © Siemens AG 2019 Page 2 2019-09-18

Why simulating flow-induced-noise?

Noise radiated by the internal combustion engine is not an issue for electric vehicles the noise generated by other existing sources will be "heard" by the driver and passenger

Flow-induced-noise

Broadband characteristic of the acoustic response

Simcenter 3D Acoustics – FEMAO Alternative solutions

Simcenter 3D Acoustics – FEMAO Benefits

- Auto-adapting (f) fluid element order
- Leaner models in pre-processing
- Faster at lower frequencies
- More efficient at higher frequencies
- 2 to 10 times faster compared to standard FEM

The supremacy of lean FE models to solve flow-induced noise

Acoustics: What happens in the presence of flow?

Unrestricted © Siemens AG 2019 Page 8 2019-09-18

The supremacy of lean FE models to solve flow-induced noise

Cabin Wind Noise – Aero-Vibro-Acoustics Which frequency range? Which loading?

Low-frequency wind noise f < 500 Hz Underbody and green house

Structure: Simcenter Nastran FEM Acoustics: Simcenter Nastran FEM/FEMAO High-frequency wind noise 1000 Hz < f < 5000 Hz Side window and/or windshield

Structure: Simcenter Nastran FEM Acoustics: Simcenter Nastran FEMAO High-frequency wind noise 500 Hz < f Underbody and green house

Virtual SEA+ / SEA+

Covered by SEA

Covered by FEM and FEMAO

Unrestricted © Siemens AG 2019

Page 10 2019-09-18

Aerodynamic field	Starting from external aerodynamic loading on the CFD mesh boundaries	
Load Preparation	Preparation of wind loads for the vibro- acoustic model via advanced mapping	
Vibro-acoustic solution	Vibro-acoustic computation of the side- window and car interior using wind loads	

External aerodynamic field around the car

Unrestricted © Siemens AG 2019 Page 12 2019-09-18

Unrestricted © Siemens AG 2019 Page 14 2019-09-18

Conservative mapping Effect of mapping on radiated acoustic power

Acoustic mesh has ~72 times fewer elements than CFD mesh

Conservative mesh mapping algorithm :

- Acoustic mesh can be much coarser
- Performance improvement for solving the acoustic model
- Better accuracy of the predicted acoustic radiation

Aerodynamic field	Compute exterior aerodynamics accurately
Load Preparation	Prepare external loads smoothly for the vibro-acoustic model
Vibro-acoustic solution	

SIEMENS Ingenuity for life

Page 17

Vibro-Acoustic Transfer Vectors (VATV) For Faster Multi-Load Case Response Analysis

VATV = SPL response to unit surface loads ~ FRF Computed using reciprocity principle

Key benefit

- No need to re-compute VATV as long as model remains the same
- Response is quickly computed for different loads:
 - TBL loads for aircraft panel x VATV
 - CFD loads on a car side window x VATV
 - Acoustic loads on car window from tailpipe x VATV

Aerodynamic field	Compute exterior aerodynamics accurately
Load Preparation	Prepare external loads smoothly for the vibro-acoustic model
Vibro-acoustic solution	Efficient finite element computation using single coarse physical mesh for all frequencies of interest

Validation Hyundai Motor Company simplified model

Unrestricted © Siemens AG 2019

Aerodynamic field	Compute exterior aerodynamics accurately	
Load Preparation	Prepare external loads smoothly for the vibro-acoustic model	
Vibro-acoustic solution	Efficient finite element computation using single coarse physical mesh for all frequencies of interest	

The supremacy of lean FE models to solve flow-induced noise

Simcenter STAR-CCM+ Acoustic Perturbation Equation (APE) Solution

	Active Sturra Region 10		C RAB-COM-
Calculate flow field	Specify a source region where noise sources are calculated	Calculate the noise sources	Use APE to calculate the sound waves

Simcenter STAR-CCM+ approaches Duct Elbow

Direct Noise Calculation

Hybrid (Acoustic Perturbation Equation)

HVAC Noise Simulations Component level free-field propagation

Acoustic wave propagation from HVAC outlet in free-field

?

Acoustic wave propagation from HVAC outlet inside cabin with absorbing surfaces such as seats, carpet and roof

Aeroacoustics hybrid simulation workflow

Aeroacoustics Hybrid simulation workflow

Generation of advanced aeroacoustics sources

Hybrid approach: Alternative Solutions

Scattered field of Quadrupole sources by the surfaces is equivalent to Dipole radiation for low-Mach Number flows

Quadrupole problem

Surface Sources: Dipoles

Benefit: Lean models with reduced load file size

Cases description

AIAA 2016-2796

Hybrid aeroacoustic computations for flows in ducts with single and tandem diaphragms

> P. Martínez-Lera^{*}, K. Kucukcoskun[†], M. Tournour[‡] Siemens Industry Software NV, 3001 Leuven, Belgium

M. Shur[§] A. Travin[¶] Saint-Petersburg Polytechnic University and New Technologies & Services (NTS), Saint-Petersburg, 195220, Russia

This paper presents the results of hybrid aeroacoustics computations of the sound induced by the turbulent flow inside ducts with single and tandem diaphragms at low Mach numbers. The aeroacoustic sources are based on compressible flow data obtained with an Improved Delayed Detached Eddy Simulation method. The source models are either based on flow wall pressure, which is used to define equivalent acoustic boundary conditions, or on flow velocity fluctuations, which are used to define equivalent quadrupole sources. Several implementations of the source models are discussed in the context of a high-order finite element approach for acoustics. The acoustic results of the hybrid approach are compared to the results provided directly by the compressible flow computations, as well as to available experimental measurements.

Tandem diaphragms (separation 2D)

Tandem diaphragms (separation 4D)

900

Low average Mach number (around M=0.07)

D=0.150m, d=0.116m, thickness 0.008m

300

x. mm

CFD: Snapshots of vorticity

Unrestricted © Siemens AG 2019 Page 30 2019-09-18

Siemens PLM Software

Single diaphragm: Acoustic prediction with quadrupole sources

Source region

Single diaphragm: Acoustic prediction with dipole sources

Dipole Sources

Tandem diaphragms: Acoustic prediction with dipole sources

Unrestricted © Siemens AG 2019 Page 33 2019-09-18

8

Siemens PLM Software

Dipole sources on <u>downstream</u> diaphragm surface (dominant source of sound)

Formulation can be applied to incompressible CFD input for similar low-Mach Number applications

HVAC Noise Simulations

Validation with academic model

Simplified HVAC from literature

29th AIAA Aeroacoustics Conference, May 5-7 2008, Vancouver B.C

Numerical and Experimental Investigations of the Noise Generated by a Flap in a Simplified HVAC Duct

Anke Jäger¹, Friedhelm Decker³, Michael Hartmann², Moni Islam³, Timo Lemke⁴, Jörg Ocker⁴, Volker Schwarz¹, Frank Ullrich⁵, Bernd Crouse⁶, Gana Balasubramanian⁶, Fred Mendonca⁷ and Roger Drobietz⁸

Daimler AG, HPC X715, D-71059 Sindelfingen, Germany
Volkswagen AG, Letterbox 1777, D-38436 Wolfsburg, Germany
Audi AG, Wind-Tunnel Center, D-85405 Ingolstaft, Germany
Dr. Jag, h.c. F. Porsche AG, D-71286 Weissach, Germany
BWW AG, Dept. EG-42, D-80788 Munich, Germany
Eas Corporation, 150 North Hill Drive, Brisbane, CA 94005, USA
CD-adapco UK, 200 Shepherds Bush Road, London W 67NL, United Kingdom
EADS Deutschall GmbH, Innovation Works, D-81663 Munich, Germany

Coupling Simcenter STAR-CCM+ with Simcenter 3D

Comparison of simulation results with measurements

Dipole sources on flap surface (dominant source of sound)

Formulation applied to incompressible CFD input

Unrestricted © Siemens AG 2019 Page 34 2019-09-18 **HVAC Noise Simulations** Propagation with cabin

Aeroacoustics simulation workflow

Aerodynamic load preparation	Prepare aerodynamic loads smoothly for the aeroacoustic problem
Aeroacoustic source modeling	Computation of the advanced aeroacoustics sources for stationary components
Acoustic propagation	Efficient finite element computation using single coarse physical mesh for all frequencies of interest

The supremacy of lean FE models to solve flow-induced noise

Cooling Fan Noise Component level simulation

Compute unsteady flow field around source region with Simcenter STAR-CCM+

Compute free-field acoustic propagation accurately

Installation effects, reflective/absorbing surface, infinite plates, porous volumes in propagation

Aeroacoustics hybrid simulation workflow

From CFD output files to propagation towards driver's ear

Turbulent flow field around the fan with Simcenter STAR-CCM+

Load and Source Preparation for aeroacoustics simulation with Simcenter 3D

Solution of the acoustic field towards the driver with Simcenter Nastran

Cooling Fan Noise Simulations in free-field with Simcenter STAR-CCM+ and Simcenter 3D

Two separate CFD inputs are considered

- With incompressible CFD input to compare hybrid and FWH approaches
- With compressible CFD input to compare hybrid, FWH and DNC approaches)

The goal of this comparison is to have

- same sound levels at Blade Passing Frequency (BPF) and harmonics
- similar broadband levels
- DNC solution is assumed to be the reference solution

Cooling Fan Noise Simulations with Simcenter STAR-CCM+ and Simcenter 3D

Unrestricted © Siemens AG 2019

Page 41 2019-09-18

Cooling Fan Noise Simulations with Simcenter STAR-CCM+ and Simcenter 3D

EM Cooling Fan Noise Simulations with absorbing and reflective surfaces

Acoustic wave propagation from cooling fan from engine bay towards driver's ear with absorbing surfaces such as panels and seats

Aeroacoustics simulation workflow

Aerodynamic load preparation	Prepare aerodynamic loads smoothly for the aeroacoustic problem
Aeroacoustic source modeling	Computation of the advanced aeroacoustics sources for rotating components
Acoustic propagation	Efficient finite element computation using single coarse physical mesh for all frequencies of interest

SIEMENS Ingenuity for life

Questions?