

[bookmark: _GoBack] [image: C:\Users\eadq6n\Downloads\siemens-careers.png]
[image:][image: C:\Users\eadq6n\Desktop\SDPD\Manual\noname.jpg]

Model-Based Systems Engineering
Manual

Volume 1

Contents
Introduction	4
Additional Course Information	5
1. Current Product Development Processes	6
1.1 High-Level Business Workflow	6
Program Definition & Planning	6
Specification Definition	7
Design and Development	7
Prototyping and Validation	7
Production	7
1.2 Introduction to Systems Engineering	8
System	8
System Element	9
System of Interest	9
System Context	9
Environment	9
System Boundary/Border	9
Links	9
Structure	10
Behavior	10
1.3 Systems Engineering Life cycle	12
Concept	12
Definition	12
Development	13
Production	13
Service	13
Disposal	13
1.4 System Development Sub-Processes	15
2. Introduction to SDPD/MBSE	17
2.1 Model-Based Systems Engineering	17
3. SDPD/MBSE in PLM Context	21
SDPD/MBSE Roles:	22
3.1 Requirements/Feature Definition	24
Exercise - Electric Longboard Development	26
Exercise: Creating requirements in Teamcenter Active Workspace	28
3.2 Architecture Definition	36
Exercise: Creating functions using Teamcenter Active Workspace	39
Exercise: Creating system architecture using Teamcenter Active Workspace	44
Exercise: Creating Analysis Requests using Teamcenter Active Workspace	49
3.3 Simulation Definition	55
Exercise: Creating a simulation definition for Electric Longboard	58
Exercise: Validating an Analysis Request	59
3.4 Electrical/Electronics	62
3.5 Embedded Software	64
3.6 3D CAE & Multi-Disciplinary Optimization	66
Exercise: Creating Product Structure using Teamcenter Active Workspace	69
Exercise: Importing Assembly from Teamcenter Active Workspace into NX	71
Exercise: Modeling Longboard Assembly in NX	74
Exercise: Validate Measurements using Analysis Request	77
Exercise: Approve Measurement Analysis	82
Exercise: Creating Analysis Request for FEA	83
Exercise: Validate Displacement in Deck using Analysis Request	85
Exercise: Approve Measurement Analysis	88
Summary	89
References	90
Appendix	91

[bookmark: _Toc523920293]Introduction
21st century product development is by no means limited to a single discipline, as the nature and complexity of products is evolving exponentially. Moreover, the increasing realization of futuristic technologies like Artificial Intelligence and the Internet of Things over the past decade has created a plethora of technological functionalities that can be offered within a product.
Remember that time when Batman could command the Batmobile to pick him up? It is not too far for this science fiction to become a reality and this is not the astonishing part of the story. Rather, the astonishing part is that you won’t have to be Batman or own a real Batmobile to experience this. Yes, self-driving cars are coming! But what does this imply? These cars would be made up of sophisticated mechatronic components coupled with embedded software running millions of lines of code per second and intelligent AI algorithms making decisions at the same time, all linked together in a highly complex fashion. This is just one example among the numerous multi-domain products being manufactured in various industries.
Hence, it has become inevitable to have a holistic, multidisciplinary perspective while developing these products. We need to make a fundamental change in the way we design and manufacture products. And indeed a fundamental change in the way we educate ourselves about it. Systems engineering is an interdisciplinary field of engineering and engineering management that focuses on designing and managing complex systems over their lifecycles. Model-Based Systems Engineering (MBSE) is a formalized approach to perform systems engineering activities with the use of computerized models.
The scope of this manual is to provide a thorough and simplistic view of the Model-Based Systems Engineering approach used in modern product development to academia based on which the professors can develop their own sets of curriculum and the students can gain the necessary insights that will prepare them well for the technologically challenging jobs of the future.
The objectives of this manual are:	
To provide an overview of the current product development process using systems engineering
To introduce MBSE as complementing the current product development process
To demonstrate MBSE in the context of PLM
To present the Siemens MBSE approach using an electric longboard system example
The manual is structured as follows:
Section 1 describes the current product development processes in industries along with a systems engineering approach to development. Section 2 introduces the model-based systems engineering approach as an evolution of the current model-based development processes. Section 3 demonstrates the MBSE phases in the context of PLM. An electric longboard example is used to implement the MBSE approach. Every phase includes questions to brainstorm followed by exercises to be carried out using Siemens PLM Suite of software.
[bookmark: _Toc523920294]Additional Course Information
Outcome
Upon completion of this course, learners will be able to:
· Get an overview of System Architecture Modeling and Simulation in general
· Model multi-domain system models using Active Workspace Architecture Modeler
· Become familiar with current MBSE best practices
Technical Requirements
Software requirements
· Teamcenter 11.4 or higher with Active Workspace 3.4 or higher
· Simcenter Amesim Version 15.2 or higher
· NX 12 or higher with Simcenter 3D
Background
Sound understanding of CAD and CAE
Associated Files
· NX Part Files
· Simcenter Amesim Model
Estimated Time to Completion
25-30 hours
Audience/Grade Level
University 3rd year +
Associated Industries
· Aerospace and Defense
· Automotive and Transportation
· Energy and Utilities
· Industry Machinery and Heavy Equipment
· Healthcare
· Marine

[bookmark: _Toc523920295]1. Current Product Development Processes

[bookmark: _Toc523920296]1.1 High-Level Business Workflow
· Every product development business process in industries such as aerospace, automotive, medical devices, consumer products, etc. have a common input: stakeholder needs, and a common output: a quality product. The stakeholder needs are translated into product requirements.
· These requirements help achieve a common ground for all the people involved in the overall product development process to understand the problem and find innovative solutions.
· A baseline of requirements is to be achieved before we proceed to the design and development phases.
Figure below shows a high level workflow of a new product development process. Even though the design process varies from product to product and industry to industry, it is possible to construct a generic diagram of the activities that must be accomplished for all projects. In project management context, the exit criteria for each phase is its approval, depending on which the project moves to the next phase, needs to be refined to move to the next phase or is completely cancelled.
[image: C:\Users\eadq6n\Desktop\SDPD\Curriculum\pictures\phases.png]
Generic product development workflow
[bookmark: _Toc523920297]Program Definition & Planning
Whether it is developing a completely new product or an existing one, the first phase is always the program definition & planning phase. The program definition is followed by project definition and planning. This phase includes activities like:
· Forming different teams
· Developing tasks
· Market research
· Estimating schedule and costs
· Project plan approval
[bookmark: _Toc523920298]Specification Definition
The specification definition phase involves two major sub-processes:
· Generating engineering specifications, and
· Setting targets
However, if the product being developed is new, an organization has to undergo the following extra steps before generating the engineering specifications:
· Identify customers
· Generate customers’ requirements
· Evaluate competition
[bookmark: _Toc523920299]Design and Development
The design and development phase involves the product design activities that happen once a baseline is achieved for the engineering requirements. The design process involves various sub-processes that include but are not limited to the following activities:
· Background Research
· Design Conceptualization
· Computer Aided Design and Engineering
[bookmark: _Toc523920300]Prototyping and Validation
Once a physical design of the product is obtained, a physical working product or prototype is created. This prototype serves multiple purposes like presenting the designs to the customers, physically testing the products to validate the design, etc.
[bookmark: _Toc523920301]Production
After the physical testing of the product, we are able to assess the performance of the product in its operating conditions. The exit criteria in this phase is to validate the operational requirements defined in the earlier stages. The design process is iterative in many cases depending on the complexity of the product because of the number of disciplines involved. Hence, it is realized more too often after the prototyping phase that a certain requirement or requirements have not been satisfied with the current design and the design needs to be modified. The design engineers have to modify, and in some cases even recreate the product design until all the design requirements are satisfied. One of the most common challenges faced in optimizing the product development process is to minimize this rework as much as possible.
[bookmark: _Toc523920302]1.2 Introduction to Systems Engineering
“The whole is more than the sum of its parts.” – Aristotle 384 BC – 322 BC
“Systems Engineering is an interdisciplinary approach and means to enable the realization of successful systems. It focuses on defining customer needs and required functionality early in the development cycle, documenting requirements, then proceeding with design synthesis and system validation while considering the complete problem. Systems Engineering integrates all the disciplines and specialty groups into a team effort forming a structured development process that proceeds from concept to production to operation. Systems Engineering considers both the business and the technical needs of all customers with the goal of providing a quality product that meets the user needs.”
- Definition by INCOSE
Systems engineering is based on the school of thought of Systems Thinking. Systems thinking is a unique perspective of looking at reality. According to the systems thinking principles, the world is composed of various types of systems like economic, social, biological, infrastructure system to name a few, that are interconnected and form systems of systems. Every system is made up of various elements and subsystems that interact with each other, their environment, and the elements and subsystems of other systems. A major implication of this interconnectedness is that no single element or a subsystem has an independent effect on the behavior of the complete system. Rather, their relationships define the behavior of the system. The same principles can be applied to engineering systems and hence the discipline, systems engineering. In classical systems engineering, every product that is being realized is considered a system having various components and subsystems linked together which is intended to perform a certain required function or functions. Below are the definitions of some of the common terminologies used in systems engineering.
[bookmark: _Toc523920303]System
A system is a set of elements and subsystems that are connected to each other, to their environment and to elements of other systems that interact with each other through a network of meaningful relationships, accepting inputs and performing functions that cannot be achieved by the elements alone.
Some other notable definitions of the term system:
“A system is a construct or collection of different elements that together produce results not obtainable by the elements alone. The elements, or parts, can include people, hardware, software, facilities, policies, and documents; that is, all things required to produce systems-level results. The results include system level qualities, properties, characteristics, functions, behavior and performance. The value added by the system as a whole, beyond that contributed independently by the parts, is primarily created by the relationship among the parts; that is, how they are interconnected.” (Rechtin, 2000)
“System is a set of elements in interaction.” (Bertalanffy, 1968)
“A system is a value-delivering object.” (Dori, 2002)
The definition of a system might differ according to the domain but the underlying principles remain the same.
[bookmark: _Toc523920304]System Element
A system element is the building block of a system. Depending on the type of system (real or conceptual), a system element can be a real object like people, physical artifacts, information, etc. or a conceptual object like an idea.
[bookmark: _Toc523920305]System of Interest
A system of interest is the system whose life cycle is under consideration.
[bookmark: _Toc523920306]System Context
System context is the diagram/representation that describes the system relationships and environment, resolved around a selected system-of-interest. A certain element may be represented in many system views. The context allows us to focus on that element in the view of the system of interest.
[bookmark: _Toc523920307]Environment
The environment is the remainder of the universe that lies outside the system boundary. The environment includes other systems that may or may not interact with the system of interest.
[bookmark: _Toc523920308]System Boundary/Border
A system boundary or border is the periphery or the border line of a system that separates it from its environment.
[bookmark: _Toc523920309]Links
Links are the connections between the elements that define the various relationships and interdependencies between them.
[bookmark: _Toc523920310]Structure
Structure is the physical or logical layout of the elements of a system design and their internal and external connections.
[bookmark: _Toc523920311]Behavior
The behavior is the nature in which the system behaves in response to changes in its environment. For example, a system can possess static or dynamic behavior.
Figure 2 represents a system context of a particular system of interest.
[image: C:\Users\eadq6n\Desktop\SDPD\Curriculum\pictures\Context.png]
System context

Some key aspects to keep in mind:
· A system is a logical abstraction of a part of the overall world with an internal structure and behavior.
· A system interacts with its environment that is a system-of-systems from the point of view of the system under consideration.
· The interaction of a system with its environment is dependent on the system’s internal behavior.
· The internal structure of a system allows the decomposition of the system into system elements.
· System elements may be interpreted as systems on their own following the pattern that what the prime contractor anticipates as a component or subsystem may be anticipated as a system in the view of the sub-contractor.
· Systems are recursively decomposed into system elements down to the implementation level with an appropriate number of recursions.

[bookmark: _Toc523920312]1.3 Systems Engineering Life cycle
Systems engineering provides a novel approach in developing and managing complex products throughout their life cycle. Systems engineering life cycle is a term used in systems engineering to describe the process of evolution of a system through different phases, starting from its conception all the way till its disposal.
Figure below represents the systems engineering life cycle. It consists of 6 phases.
[image: C:\Users\eadq6n\Desktop\SDPD\Curriculum\pictures\LifecyclePhases.png]
System life cycle phases

[bookmark: _Toc523920313]Concept
The concept phase is the start of any program or project. In this phase, the idea of the product development program is explored and elaborated. Hence, this phase is sometimes also called as the Initiation or Ideation phase. The goal of this phase to evaluate the program effectiveness and feasibility. The concept phase involves major processes like,
· Program definition
· Project definition
The definition phase is where the stakeholders of the system are identified and the scope of the program/project is defined. Based on an assessment of stakeholder expectations, the outcome of the program/project and the expected results are identified.
[bookmark: _Toc523920314]Definition
In the definition phase, the stakeholders’ expectations are taken into consideration. The stakeholders of a system vary from industry to industry and product to product and includes entities like the organization that manufactures the product, the governmental or regulatory agencies, suppliers and vendors, the customers or end users and many more. The stakeholders’ needs are translated into requirements and well-defined documentation/specification of requirements is achieved in this phase.
Requirements definition is followed by design conceptualization. Various system design alternatives are created and evaluated based on performance, schedule, cost and risk figures of merit and the most efficient design of the system is selected. The system design can be realized in various forms like Visio diagrams, 2D/3D CAD, etc. Factors such as design time, need for a faster time-to-market, and high downstream manufacturing costs require that the design be finalized after this stage.
[bookmark: _Toc523920315]Development
The definition phase is followed by the development phase where everything that is necessary to implement the product is arranged. All the suppliers/vendors are brought in, schedule is made, materials and tools are ordered, etc. Hardware-software subsystems are integrated and final integration of the subsystems is done to implement the complete system.
[bookmark: _Toc523920316]Production
The development phase allows to validate the product according to its requirements as a physical prototype is created during the development phase. It poses high risks for an organization to change any requirement after the development phase. Activities such as change management, configuration management, schedule management fall in this spectrum of organizational management where the focus is on effectively managing the design changes in response to changing stakeholder requirements or defects in production due to incorrect designs.
[bookmark: _Toc523920317]Service
The service phase is where the product actually starts getting utilized by its end users. The service phase includes activities such as,
· Operation
· Maintenance
· Sustainment
[bookmark: _Toc523920318]Disposal
This is the last phase of the system lifecycle, where the product retires and is disposed. Also referred to as Retirement Phase.
As you might have realized already, the first three phases are the system development phases of the life cycle whereas the following phases are the manufacturing and utilization phases.
Currently, in many organizations, these different phases of system life cycle operate in silos, meaning there is very little or no collaboration between the different groups in these phases in terms of exchange of product related information. Lifecycle Management is the active engagement of all stakeholders with a system between the time when it first starts to operate until the time of its decommissioning, in order to maximize the value gained from the system’s existence. Lifecycle management starts from the beginning.
The focus of this manual is to break down the first three phases of system development and to demonstrate the lifecycle collaboration possibilities between the stakeholders of these phases. Although there exists a collaboration to some extent as of today, many companies still face a challenge in managing the product assets and artifacts throughout its lifecycle. It is surprising that many companies practice systems engineering in designing and managing their products without achieving the full potential and benefits of systems engineering. As a matter of fact, some don’t even realize that they have been practicing SE for a long time.

[bookmark: _Toc523920319]1.4 System Development Sub-Processes
[image: C:\Users\eadq6n\Desktop\SDPD\Curriculum\pictures\Sub-processes.png]
Life cycle phases of system development
The first three phases of system development can be translated into a system V diagram. This diagram is also called System V, The V Model.
The V model allows a methodological process model across the product lifecycle phases. There are many versions of the V model varying according to the domain, process or industry. However, the underlying concept is the same. A notable mention of the V model is in the VDI 2206 guideline for designing mechatronic systems. [2]

[image: C:\Users\eadq6n\Desktop\SDPD\Curriculum\pictures\Vee.png]

Basic System V diagram
The left side of the "V" represents the decomposition of requirements, and creation of system specifications. Since a system would contain various subsystems forming a system of systems, as you go down the left side of the “V”, various subsystem requirements are identified and subsystem specifications are created. These subsystems possess their own “V”. The bottom of the “V” represents acquisition and implementation phase where all the necessary materials, tools, processes and people and brought together to create the product prototypes. The right side of the "V" represents integration of various subsystems and their validation. Validation in this case means actual testing. There would also be validation on the left side of the “V” as 1D system models and 3D CAD models are simulated and validated against the requirements. After, subsystem integration and validation, the subsystems are integrated together to perform system integration to achieve the finished product.

In systems engineering, the main workflow for system development is as follows:
· Requirements definition in the form of documents, models
· Functional breakdown definition based on requirements
· Logical architecture definition
· Physical Product, HW/SW definition
[image: C:\Users\eadq6n\Desktop\SDPD\Curriculum\pictures\RFLP.png]
RFLP Verification and Validation

This workflow is also referred to as RFLP. The development workflow is iterative because of recursive iterations in system design and architectures, and requires continuous verification and validation of requirements and architectures. Section 3 describes more about the RFLP architectures.
[bookmark: _Toc523920320]2. Introduction to SDPD/MBSE
[bookmark: _Toc523920321]2.1 Model-Based Systems Engineering
The systems engineering activities discussed in Section 1 have been performed by many large-scale projects in industries, mostly aerospace and defense and automotive. These projects have employed the document-based systems engineering approach. This approach is characterized by the generation of textual specifications and design documents, in hard-copy or electronic file format and then exchanged between customers, users, developers and testers. System requirements and design information are expressed in these documents as text descriptions, graphical depictions generated from drawing tools, and tabular data and plots that may result from executing analysis models or derived from databases.
Model-Based Systems Engineering is the formalized application of modeling to support system requirements, design, analysis, verification and validation activities beginning in the conceptual design phase and continuing throughout development and later lifecycle phases. The continued introduction of new technology has increased the complexity of products, and made product development and life cycle management more difficult.
As new features are introduced in a product, new areas of domain expertise are needed, including mechanical, electrical engineering, software, and simulation. Each domain evolves its own techniques and brings its own set of specialized tools to solve its particular set of problems in its own languages. These domains must communicate to optimize integration. Technology has helped improve and bridge the communication gap with connectors, data translators, and temporary data stores. But the real problem is not the loss of information in translation, but a failure of meaningful cross-domain coordination. With the exception of requirements, where most companies have standardized processes, there are often as many system specifications as there are domains, that is, potentially disparate, inconsistent, and duplicated information. [7]
Also, there may be no central place for the collection of specifications, preventing accurate validation and verification of the integrated product. Failures at points of domain interfacing can ultimately lead to poor product performance and quality, resulting in unhappy customers. They may also cause safety concerns or expensive recalls.
Coordinated system modeling keeps companies and their vendors synchronized, allowing domains to develop their technologies as independently as possible while reducing or eliminating integration failures.
The output of model-based systems engineering activities is a coherent model of the system where emphasis is placed on evolving and refining the model using model-based methods and tools. An MBSE approach focuses on creating a system model that would act as a single source of truth for product information. A system model can be created using a modeling tool and stored in a model repository.
[image: C:\Users\eadq6n\Desktop\SDPD\Curriculum\pictures\DcvsMod.png]
From documents to models

Implementing an MBSE approach provides numerous benefits to an enterprise like:
· Better communication among development team
· Improved product quality
· Reuse of system specification and design artifacts across life cycle
· Enhanced knowledge transfer across domains
· Increased productivity
Traditional model-based systems engineering resulted in large hierarchies that were difficult to maintain and reuse. System models help programs improve through their configurability and modularity. Additionally, by designing systems using system modeling and analyzing through simulation, stakeholders obtain a view of product development achievement early in conceptual design, helping reduce overall program risk and cost. However, many challenges still exist to realize the complete potential of the MBSE paradigm, such as:
1. End-to-end requirements traceability
2. Results from MBSE must be made available over the whole product lifecycle
3. Real-time model update of designed product during manufacturing and development
4. Early design decisions must be logically and functionally validated using system models (front-loading)
5. Need for a common language to enable shared understanding
6. The MBSE tool chain must rely on technology independent standards
[image: C:\Users\eadq6n\Desktop\SDPD\Curriculum\pictures\SE.png]
Model-based development in SILOs
MBSE provides a cross-domain framework to capture and map the relationships needed to make global and cross-domain design decisions required to develop modern multi-domain products. Following is a more accurate definition of MBSE:
Model-Based Systems Engineering) is an open and modular framework that integrates modeling and simulation tools to predict product and process performance across a wide range of disciplines and domains, including mechanical, electrical, software, and controls.
MBSE enables you to:
· Capture the voice of the customer as requirements.
· Support your design, manufacturing, and service operations.
· Facilitate enterprise program management, change and issue management, as well as configuration management.
· Ensure consistent data and business processes.
· Integrate and coordinate engineering disciplines: existing tools, existing processes, and people.
[image: C:\Users\eadq6n\Desktop\SDPD\Curriculum\pictures\SDPD.png]
SDPD/MBSE Collaboration Platform
By leveraging MBSE, anyone touching a physical design is able to understand which functions the design supports and the role each component plays in fulfilling a requirement. This is especially valuable in projects that span mechanical, electrical, and software engineering, in which complete traceability is crucial for facilitating collaboration and knowledge reuse.

[bookmark: _Toc523920322]3. SDPD/MBSE in PLM Context
This section of the manual will demonstrate how an MBSE process can be managed in the context of a Product Lifecycle Management (PLM) system.
Product Lifecycle Management is the process of managing the entire lifecycle of a product from inception, through engineering design and manufacture, to service and disposal of manufactured products. PLM integrates people, data, processes and business systems and provides a product information backbone for companies and their extended enterprise. [4] For more insights about PLM, consider taking the course Introduction to PLM with Teamcenter in the Academic Resource Center of Siemens Learning Advantage.
As of today, PLM and MBSE are two different approaches to product development, evolved from different requirements. MBSE is applied in the early stages of product development and is usually disconnected from the PLM systems.
Initially, Product Data Management (PDM) was introduced to handle product specifications like CAD files and requirements documents. PLM is the evolution of PDM to manage all information around a manufactured product throughout its lifecycle. PLM systems allow to manage product artifacts like requirements, 2D drawings, 3D CAD files, manufacturing process information, etc. With the introduction of system modeling, there is a growing need to manage these system models along with the underlying metadata across their lifecycle such that these can be utilized by stakeholders at each phase of product lifecycle. This is sometimes referred to as System Lifecycle Management. PLM systems themselves are seen as a document-based approach as they are handling documents and correlating metadata. Future PLM systems must incorporate more structured information with meaning and follow a stronger model-based approach than it does today. In other words, new generation PLM must itself be Model-Based. This is seen as a paradigm shifting trend [3].
This is the focus of this section. We will discuss the six phases of MBSE in the context of a PLM system that start from defining system requirements, creating system architectures, simulating the system for performance optimization, developing the electrical and electronic architectures along with embedded software development as part of development sub-processes, and finally 3D product design and multi-disciplinary optimization. We will review these 6 phases in our closed-loop process and will demonstrate how Siemens provides a product innovation platform for digital product development. We will simultaneously implement this process using an example of an electric longboard system and throughout this implementation, we will witness multiple examples of traceability from requirements to implementation. This provides a consistent view of the product data for reviews throughout the program.
[image: C:\Users\eadq6n\Desktop\SDPD\Curriculum\pictures\Phase0.png]
SDPD/MBSE Business Processes
[bookmark: _Toc523920323]SDPD/MBSE Roles:
It is to be noted that MBSE is a framework, not a discipline. Hence, to successfully implement this framework, collaborative effort is required from people with different roles in an organization spanning multiple domains. The following roles participate in Systems Driven Product Development (SDPD) processes:
System analyst
Responsible for planning, designing, and implementing systems. Reviews the customer needs, identifies use cases, derives and identifies system requirements, and performs function behavioral analysis.
System architect
Responsible for planning the architecture and defining the reuse of parts and assemblies. Has insight into assemblies used. Manages the configurable system architecture, including structure, allowed variability, and view/viewpoints. Sometimes referred to as the technical architect.
System designer
Responsible for implementing the system architectural, logical, and physical designs. Creates and manages systems, performs functional allocations, and models system interactions. Sometimes referred to as the system engineer.
System tester
Responsible for verifying that the system meets defined requirements. Reviews the output of the system analyst and system designer to define appropriate test cases for the system.
Domain engineer
Realizes the system model according to an expertise area (software, electrical, simulation, and so on) to further analyze and document the system. The domain engineer role is typically fulfilled by one of the following:
· Electrical/Electronic (ECAD) designer or engineer
Responsible for designing printed wiring boards (PWBs). Writes firmware. Implements the system model electrical, electronic, and firmware architecture.
· Mechanical (MCAD) designer or engineer
Responsible for specifying the structural properties of a product design and designing materials, structures, and systems while considering the limitations imposed by practicality, regulation, safety, and cost. Implements the system model physical architecture.
· Software engineer
Derives low-level SW requirements based on subsystem specification. Develops software, performs software analysis, creates software change requests and manages the changes as well as implements the developed software.
· Simulation engineer
Configures and operates computer-based simulation models. Provides analysis of a functional area and advises best methods of implementing a course of action given the strengths and weaknesses of the simulation. Runs simulations against models and requirements.
Application administrator
Responsible for the configuration of software and data to meet company requirements and user needs.
[bookmark: _Toc523920324]3.1 Requirements/Feature Definition
[image: C:\Users\eadq6n\Desktop\SDPD\Curriculum\pictures\Phase1.png]

During the model-based systems engineering stage of product development, system analysts set product plans and expectations as requirements. Requirements describe the product or system that a customer buys. Think of requirements as customer specifications.
Product requirements come from a variety of sources such as industry standards, company mandates, market needs, contractual commitments, and consumer expectations. Requirements can take many forms.
· Functional requirements to ensure that a product operates as designed.
· Voice of the customer requirements to ensure that your customers receive the features and functionality that they require. Some requirements are related to standards, guidelines, and regulations.
· Business and marketing requirements to ensure that products meet sales objectives and fit market niches.
Product requirement management plays a key role in the model-based systems engineering process. System analysts build in the voice of the customer through requirements. For the requirements engineering process to be effective, the team must be able to perform the following:
· Capture, share, and maintain the requirements using familiar tools and in a single-source environment.
· Link requirements to the product and all its configurations and processes across the product lifecycle.
· Verify requirements against the product models and assess the change impact to requirements or the models.
Feature planning takes place before creating requirements as part of the planning and governance process. Requirements management works in conjunction with system modeling and system simulation to both design and test the system model. The validated system model can then move to the physical-solution-definition process of product development.
Because systems are not developed at a single level, several team members perform each role such as system analyst. For example, development progresses from lower level systems overseen by several system analysts to higher level systems with their own system analysts.
Unfortunately, insufficient planning and misunderstood expectations affect more than two-thirds of all product development projects. However, the systems driven development process (SDPD) helps solve both problems during the decision-making stage.
To manage requirements, an organization may use spreadsheets, linked documents, custom databases, and document-oriented tracing tools. Typical problems in such methods are that requirements are isolated on individual computers with limited access, stored in databases with little resemblance to the product structure, or maintained through complicated user interfaces with significant learning curves. SDPD addresses this problem by bringing requirements into the life cycle and simplifies requirement development and access, and substantially reduces the learning curve. Using Active Workspace, system analysts develop requirements with explicit requirement objects that can be easily translated in Microsoft Office Word and Excel documents, tools that are readily available in most organizations.

[bookmark: _Toc523920325]Exercise - Electric Longboard Development
Scenario:
An established skateboard company wants to manufacture an electric longboard because of an increasing demand of longboards as a preferred means of short-distance transport for high-school and college students.
[image: C:\Users\eadq6n\Desktop\SDPD\NX Model - Skateboard\Top Skate Assembly\skate_assembly2.png]
Objective:
It is required to develop an electric longboard and deploy into the consumer market within a span of 6 months.
Functional Requirement:
Range of minimum 12 miles, while driving economically.
Quality Requirement:
The skateboard should be maintenance free for 1 year. Tha average life of all the components should be more than 3 years.
Program Budget:
1 million USD
Business Requirement:
The company wants to develop a digital twin of the product that will allow them to simulate and optimize the physical design of the product before proceeding to the production phases with the least consumption of its resources and maximum engagement of its employees during the development phases.
In this case study, we will demonstrate how Siemens PLM Software Suite helps us to seamlessly implement the SDPD approach by creating a digital twin of the product and a digital thread from the early development cycle.
Brainstorming:
1. Identify various types of stakeholders for the skateboard system.
2. List down the various requirements that need to be generated for the system.
3. What are the different types of requirements engineering formats/software/standards that you know?

[bookmark: _Toc523920326]Exercise: Creating requirements in Teamcenter Active Workspace
If you are not familiar with Teamcenter Active Workspace, please refer to any or all of the following courses in Siemens Learning Advantage
	Name of the course
	Section
	Category

	Active Workspace
	Self-paced courses
	Active Workspace

	Introduction to PLM with Teamcenter
	Self-paced courses
	Academic Resource Center

1. Start Active Workspace

· Login to Teamcenter Active Workspace from your web browser:

Enter your User ID and Password

[image:]
2. Create a new project folder in the Home Folder

· Go to Home Folder
· Create a new folder called Electric Longboard Project
[image:]1

[image:]
[image:]

3
2

3. Create a container for all requirements
· Go to the newly created project folder:
There are 2 ways of opening a folder
· By clicking the small triangular icon next to the folder [image:]
· By clicking the open command from the one-step command on the top right

[image:]

· Create a container for requirements specification. Just like we added a new folder, add a requirement specification object in the project folder and name the specification object as ‘Requirements’
[image:]

4. Create longboard requirements in a system context.
In order to create trace links between different artifacts of the system definition, we need to have a system context defined. Therefore, before creating the requirements, let’s save a working context.
To save a working context,
· Open [image:] the Requirements specification
· In the requirement specification opened, select the Overview tab in the diagram window [image:]
· Click [image:] and then use the Save Working Context pane to specify a name and a description. Name the working context as Electric Longboard Architecture and enter a description. Click Save
[image:]

· Once we’ve saved the working context, we need to pin it to the Home Screen (Gateway) so that we can easily access it the next time. Your view should look like this
[image:]
· Click on the Pin to Home command. [image:] When you do that, make sure to deselect your Requirement Specification, otherwise, you will pin the Requirement Specification to Home
· Check your home screen, you should be able to see the saved working context [image:]
We can now start creating our longboard requirements in the working context.
· Open the saved working context and with Requirements specification container selected, create a child requirement called Power Source using the object type Requirement
· Click on the Add Element icon [image:]and select Child in the pulldown list.
· Select the Requirement object type.
Next, we will add the body text to the requirement.
Make sure you have the Tree with Summary view selected at the left side. If not, select that view.
. [image:]
· Select the Power Source object in the tree and click on the Documentation Tab, then Start Edit [image:] Summary to begin editing the requirement body.
· You should see a document that looks like the image below
[image:]
· Remove Power Source in the body text and add the text: The longboard shall be electric power driven.
· Click Save Edits [image:]once filled in.
This way of editing requirements in Teamcenter is called rich-text editing. It gives a more convenient and document-like feel of editing requirements for engineers that are used to writing requirements in MS Office documents.
Create all your longboard requirements defined in your brainstorming session in a similar way. Refer to the requirements below for reference. Please note that these are high-level system requirements. In product development program, these requirements might get refined and new requirements may be defined multiple times by various stakeholders in different phases of system lifecycle. Remember to Save your working context every time you add or make changes to it. Words in bold are the requirements and sentences below are the descriptions. Indented requirements are the child requirements.
[bookmark: _Toc521932801]Power source
The longboard shall be electric power-driven.
[bookmark: _Toc521932802]Range
The longboard shall be able to travel at least 12 miles in a single charge.
[bookmark: _Toc521932803]Charge time
The longboard shall not take more than 4 hours for full charge.
[bookmark: _Toc521932804]Speed
The longboard shall be able to transport an average skater at 20 mph (8.9 m/s).
[bookmark: _Toc521932805]
Portability
The longboard shall be easy to carry around.
[bookmark: _Toc521932806]Dimensions
The dimensions of the longboard shall not be greater than 900 mm X 200 mm X 150 mm.
[bookmark: _Toc521932807]Mass
The mass of the longboard shall not be more than 17 lbs.
[bookmark: _Toc521932808]Cost
The total cost of the longboard shall not be more than 500 USD.
[bookmark: _Toc521932809]Usability
The longboard shall have high usability.
[bookmark: _Toc521932810]Environmental friendliness
The longboard shall have EPA approval.
[bookmark: _Toc521932811]Wireless control
The longboard shall be able to be controlled by a wireless control device.
[bookmark: _Toc521932812]Transportation
The longboard shall be able to provide manual/power-driven transportation to the user.
[bookmark: _Toc521932813]Operational requirements
These requirements define longboard performance in varying operational conditions.
[bookmark: _Toc521932814]Skater weight
The longboard shall support a skater weighing up to 200 lbs. (91 kg)
[bookmark: _Toc521932815]Road conditions
The longboard shall be able to operate on various road surfaces.
[bookmark: _Toc521932816]Dry roads
The longboard shall be able to operate on dry roads.
[bookmark: _Toc521932817]Wet road
The longboard shall be able to operate on fairly wet road surfaces.
[bookmark: _Toc521932818]Pavements
The longboard shall be able to operate on paved sideways.
[bookmark: _Toc521932819]Ambient conditions
The longboard shall be able to operate economically in ambient temperatures ranging from 0 degree Celsius to 35 degree Celsius.

Your requirements decomposition should look something like this:
[image:]

[bookmark: _Toc523920327]3.2 Architecture Definition
[image: C:\Users\eadq6n\Desktop\SDPD\Curriculum\pictures\Phase2.png]

System architecture modeling is an approach that focuses on the conceptual design early in product line engineering and the reuse of existing engineering knowledge for the first three levels of system specifications:
· Requirements (what is the system purpose?)
· Functional (what are the system principles?)
· Logical (what is the system model?)
System modeling activity results in a functional black box model (system model) and its interface specification. This system model acts as a governing specification to the activities of physical design and analysis where software, E/E, 3D MCAD, CAE, and 1D simulation domains happen.
A system model represents a solution for a target or requirement. Designers must come up with a solution to meet these targets, requirements, design constraints, and limitations. A system model depicts this solution with reference to the associated targets and constraints. To manage the complexity of the vehicle system, you can use multiple system models with their interfaces and specify the interactions between them.

As a result of system modeling, systems engineers are able to represent the system of interest in the form of two architectures
Functional Architecture
A functional architecture model is a structured representation of the functions, behaviors, activities or processes of the system or product you want to design or enhance. It describes the functions and processes, assists with the discovery of requirements, and establishes a basis for determining manufacturing and service costs.
This model may comprise functions, transformations, activities, actions, tasks, and other components. The design analysts develop this model and create a data flow diagram. This modelling activity is referred to as creating a functional decomposition. If appropriate, you can use mathematical techniques or simulations to describe the relationships between components of the model and how they interact.
You represent components with building blocks in the diagrams and create trace links between the blocks to indicate how they relate to one another. After you identify components and their relationships, you can assign requirements to them. Functions satisfy the functional requirements of the product; each function may satisfy more than one functional requirement.
You normally express a function as a verb and an object, for example, maintain clearance or transport material.
A functional model is independent of a particular discipline such as software development or mechanical design. It supports the collaboration and defines what the product must do. Simultaneously, you can create a set of abstract solution models (logical models) that are organized into a subsystem decomposition and contain discipline-specific abstract solution elements. These two models evolve together and can generate technical constraints or additional or more detailed requirements.
Logical Architecture
System design involves identifying system components based on the functional architecture and specifying the component requirements so that system requirements will be met. This involves creating a logical abstraction of the system architecture that is independent of the technology used, and then a physical system design that reflects specific technology solutions. Logical architecture is abstract, conceptualization-oriented, global, and focused to achieve the mission and life cycle concepts of the system. It also focuses on high‐level structure in systems and system elements. It addresses the architectural principles, concepts, properties, and characteristics of the system-of-interest.
For example, a logical design that is technology independent may include a component called torque generator whereas alternative physical designs that are technology dependent may include a combustion engine or an electric motor.
Brainstorming:
1. Identify the functional requirements from your requirement specification.
2. List down the various functions that the system would need to perform to satisfy these requirements.

[bookmark: _Toc523920328]Exercise: Creating functions using Teamcenter Active Workspace
SDPD Role: Systems Engineer
Just like requirements, active workspace provides an explicit functional block called Function to create system functions
1. Start Active Workspace
2. Open the saved working context eLongboard Architecture
3. Create a container for system functions
· Add a new Function element similar to adding Requirement Specification. Make sure the Requirements specification is deselected when you add the new function element.
[image:]
4. Create the system functions
In the functions container created in the previous step, add the various system functions you have identified. Your functional decomposition should look something like this. Remember to Save your working context regularly after every activity so that you won’t lose your data.
[image:]
5. Create trace links between requirements and functions:
Active Workspace Architecture Modeler provides various modeling capabilities to generate different system/subsystem architectures. This is a really powerful functionality as we are able to create multiple trace links between different system artifacts. This enables detailed traceability of requirements throughout the downstream development phases.
In order to create trace links, we need to be in the Architecture tab in the summary window.
· Open the Architecture tab.
Notice that not all the requirements and functions may be visible in the Architecture view. In Active Workspace, we can hide and unhide the system artifacts/objects by clicking on the object icon on the tree on the left.
· Click on the requirement specification icon and the function icon. Notice how the container icons are high-lighted and the elements inside the container are not. In order to see all the objects in the architecture view, you can do this in 2 different ways
1. Left-mouse click on the icons in the tree view
2. Click on the solid triangle [image:] in the container object in the Architecture view to expand the child elements
[image:]2
1

You can optionally just display the functional requirements as we will be linking these to the functions.
You should be able to see the child requirements and functions similar to the image below:
Some commands of the Architecture tab to keep in mind:
· Middle mouse button allows to zoom-in and zoom-out in the Architecture tab
· Double clicking left-mouse button in the empty white space in the diagram area fits the architectures to the window
· Full screen command allows to maximize the diagram window to screen size
· Left-mouse click and drag allows to move the architectures within the diagram window
The fully expanded view of the architecture should look similar to the image below:
[image:]
· Click Start Authoring [image:] to start creating trace links
· Click Relation Controls [image:] on the right and select Traceability option. To create multiple links at a time, you can select Traceability twice if you want to create multiple trace links.
· Now click on the requirement, drag and drop the link to the function. The function will get highlighted once you bring the cursor near the function. Drop the link when you see the function highlighted. The links should look like below:
[image:]
6. Create all the links between the requirements and the functions
It is not always that only one function will satisfy one requirements. A single function might satisfy multiple requirements. Similarly, multiple functions might be required to be performed to satisfy a single requirement.
Also, a function can be linked to another function to create a functional flow diagram. Create links between different functions first, and then between the requirements and the functions.
The architecture should look something like the image below:
[image:]
· Go the Overview tab and Save your current working context
Brainstorming:
1. Identify the logical elements of your system that will perform the required functions
2. What other architecture modeling languages, software, and frameworks do you know?

[bookmark: _Toc523920329]Exercise: Creating system architecture using Teamcenter Active Workspace

Now we will be creating the system model to represent the logical abstraction of the system. These logical elements are should perform the required system functions.
1. Create System Model
· Go the eLongboard Architecture context and create a new System Model object called Logical Architecture.
A system model in Active Workspace is composed of system blocks and the logical relationships between them.
Create the following System Block elements as child to the Logical Architecture
[image: C:\Users\eadq6n\Desktop\SDPD\Curriculum\pictures\tg.png]

2. Connect the system blocks to create the logical architecture
Just like we created the links between requirements and functions we will create trace links between functions and system blocks.
But before that, we will have to create logical connections between the system blocks.
· To create a logical connection, in the Architecture tab, click Start Authoring
· Go to Relations Control > Connectivity > Logical Connection
Your logical architecture should like the architecture below:
[image:]
Now that we have the logical architecture, we will need to simulate the system behavior to optimize system performance and generate design specification of the system components.

3. Allocate functions to system blocks
· Just like we created trace links between requirements and functions, create trace links between requirements and functions. Save the working context.
At this point, we have established a traceability relationship between the requirements, functions and logical/system blocks or RFL. We have obtained a high-level system definition that describes what the system is required to do, how the system would satisfy those requirements and what the necessary elements are required that would enable the system to perform its functions. Your architecture view should look something like below:
[image:]
However, before designing the actual physical components, we need to make sure that the system definition that we have created performs as expected. In other words we need to answer two questions, have we created the right system definition? And, have we created the system definition right? In order to analyze the system behavior, we need to create system simulation models that are based on the logical architecture. These higher-fidelity system models help to identify the optimum specification for the system components before starting to define the physical geometry of the components. This process is also called front-loading the design decisions. Such simulations provide tremendous benefits to an organization such as,
· Reduced design expenditure,
· Faster time-to-market, and,
· Improved quality of products.
Some of the widely used system simulation software for analyzing complex systems include Simcenter Amesim for mechatronic systems, GT Power for mechatronic systems, etc. Also, some of the widely used symbolic tools that provide similar capabilities include MATHWORKS Simulink for controls and Modelica for multi-domain systems.
It has been a matter of discussion for a while now about how to utilize the complete potential of the high-level system model and high-fidelity simulation models in an integrated fashion. Various research works are being carried out in this regard.
Siemens PLM Software provides solutions that enable communication between the system models and the simulation models in two ways:
- By creating analysis requests using Teamcenter Active Workspace
- Architecture defined in Teamcenter can be directly used as the starting point for the simulation (in pipeline)
An analysis request specifies a calculation, simulation, or test that validates if targets for one or more measurable attributes are satisfied by a specified configuration of the product, system, or subsystem. The request may reference any type of system model or block used to perform calculations or delivery of a feature.
A typical analysis request user workflow in context of collaborative mechatronic simulation is shown below:
[image: C:\Users\eadq6n\Desktop\SDPD\Curriculum\pictures\Analysis_Request_Amesim.png]
The analysis request does not handle the simulation data itself but collects and distributes the results of calculations.
For example, when designing a car engine, the targets specified in the analysis request may include fuel consumption, CO2 emissions, and particulates. For each target, the system designer sets measurable values on the attributes. At all times, the simulation engineer can see the required target values.
The simulation engineer can access the analysis request in the Active Workspace inbox. The analysis request provides the relevant architecture information to the simulation engineer to verify requirements from an already developed simulation definition. Once the simulation engineer has completes the system simulation, he approves the analysis and sends back the simulation results to the systems engineer to create design specifications.
A systems designer owns the analysis request and can perform the following tasks:
· Populate the inputs and attributes of the analysis request with sufficient data for the simulation engineer to perform the necessary analysis.
· Submit the analysis request to a workflow.
· Publish the measurement values from the outputs on the analysis request to the system model.
· Assign the simulation engineer to the analysis request as a participant.
Brainstorming:
· Determine the inputs and outputs for your longboard system simulation
· What are the key parameters that you think would significantly affect the system performance?

[bookmark: _Toc523920330]Exercise: Creating Analysis Requests using Teamcenter Active Workspace
SDPD Role: Systems Engineer
In our example, we will synthesize the performance of our longboard by varying two parameters:
1. Wheel radius
2. Mass of the skater
We will monitor the change in the translational velocity of the skateboard to verify the speed requirement
1. Create Attribute definitions
· Go to the Electric Longboard Project Folder.
· Create a folder called Attribute definitions
· Create an attribute definition
· We need to create attribute definitions that can be used to provide inputs and specify target values to the measurable attributes
· Go the newly created Attribute definitions folder
· Just like we add objects, select add and search for attribute definition object
[image:]

· Create 3 attribute definitions using the data below.
	Attribute Name
	Attribute Type
	Unit of Measure

	Radius
	Integer
	mm

	Mass
	Integer
	kg

	Speed
	Double
	m/s

To avoid possible training or consistency issues, the system designer wants users to select from an approved measurable attribute types. Therefore, once you define an attribute definition, you submit it to an approval workflow.
For the sake of our project, we will select the Quick Release workflow template to quickly approve the attribute definition
If you have several related attribute definitions, you can select them all in the left-hand panel and submit them to the same workflow.
Workflow templates are specific to an enterprise as the tasks included are specific to their business needs. Other users review and sign off the attribute definition, depending on the tasks defined in the workflow template.
When all approvers have signed off the attribute definition, the system sends a message to your inbox. You can also check the status of an attribute definition at any time by clicking the Overview tab and looking at the Release Status property; if the attribute definition is ready for use, this property contains Approved or other release status that is defined by the system administrator.

2. Send the attribute definitions to a workflow
· To approve the attribute definitions, Ctrl-click and select the three attribute definitions and click Submit to Workflow, [image:] select the QuickRelease workflow template, and then click Submit.
 [image:] [image:]1
2

· You will see Approved Release Status meaning that they are approved.
3. Create an Analysis Request (AR)
We will create an analysis request for the Speed requirement. The systems engineer wants to specify the number of cells required for the battery and the radius of the longboard wheels to satisfy the speed requirement.
Before that, we will assign the measurable attribute of Speed to the Speed requirement and the Wheel Radius and the Mass of the skater as inputs.
Creating such an analysis requests provides the following key data to the simulation engineer like the requirement associated with the AR, the functions, system blocks and the interface data linked to the requirement object.
· Select the Speed requirement in the system context tree view
· Select measurable attribute [image:]
· Search and select the Speed attribute. Fill the following information for the attribute
[image:]
· Add the measurable attributes for Speed, Wheel radius and Mass with the following properties (Select [image:] to add the next two attributes):
	Attribute Name
	Goal
	Minimum
	Maximum

	Radius
	42
	38
	44

	Mass
	91
	80
	91

	Speed
	8.9
	7
	12

· Create an analysis request. Select [image:]to create one.
· Enter the information as below. A specific analysis definition can be created by a system administrator in an organization. We will use the RFLP Definition. You will see that the domain context is automatically selected as your system context.
[image:]
· Your AR will open automatically.
· You can also access the AR from the Plan tab [image:] on the right, when you select the object that you have created an AR for.
· Go to the Inputs tab inside the AR. You will see the measurable attributes in the attributes section along with the necessary system definition details below.
· You will observe that all the attributes have assigned as inputs by default. We will have to change the Speed attribute as an Output.

Note: The Inputs tab in the AR represents the necessary architecture information that Active Workspace helps provide to a simulation engineer as inputs, whereas the Input/Output column states whether an attribute is an input parameter or output parameter to the simulation.
· Select Speed in the table. Select the one-step command called Toggle Inout/Output [image:] located at the top right.
· From the attributes table, change the value of Speed to Output
· Go to the Participants tab to add the simulation engineer. In our case we will assign ourselves as the simulation engineer as we will now take the role of a simulation engineer to create a simulation definition.
Select [image:] in the Participants section and search for your username to add yourself as a participant.
· Now submit the analysis request to a workflow. In order to do this, we need to go back to the Content tab.

For academic purposes, it is recommended that the university IT administrators create a simplified workflow templates to simulate the scenarios.

· If you don’t have a simplified workflow template created, select the Analysis Request State Workflow and submit the AR to the workflow.

[bookmark: _Toc523920331]3.3 Simulation Definition
[image: C:\Users\eadq6n\Desktop\SDPD\Curriculum\pictures\Phase3.png]

Once we have a system definition consisting of functional and logical architectures in place, the simulation engineer creates a simulation definition to assess the feasibility of the system definition.
A simulation definition consists of multi-domain subsystem models and components linked to each other through ports and interfaces. These subsystem models are physics-based models developed in various domains including mechanical and control systems developed by physical plant engineers and controls engineers. The current practice in industries is to simulate these plant and control models separately causing redundancies, inefficiencies and inconsistencies in the engineering process. Some of the common challenges faced by current simulation engineers include:
· Quick analysis of concepts is difficult when model artifacts and parameters are located in various locations and data safari is required
· The subsystems need to be brought and assembled. Assembly of subsystems can be complicated with models developed using different tools. The process can be even more complicated if subsystems from different teams do not comply and this leads to an entire debug process. Assembling subsystem models and debugging them is a laborious model, especially considering the rapid evolution of design
· Assembling multiple subsystem models also leads to multiple variants of such systems having common topology. These assemblies can get very complex very quickly with multiple interactions and variations. Teams are working in SILOs on different versions of a model without any standard w.r.t I/Os and interfaces; thus making it even more difficult to integrate as well as re-use subsystems for an application
· Changes in architecture are not easily transferred between various users and roles
Overall, the current manual integration process takes up majority of engineering resources and this leaves only 20% for analyzing the results and running trade-off studies to impact the development of the products. A well-defined simulation definition helps address these common challenges and enables physical plant and controls engineers to collaborate efficiently by providing them with a common language based on interfaces and therefore making system integration easier. Moreover, these simulation definitions are life-cycle managed in the context of a PLM system which allows real-time traceability of simulation data back to the architecture definition. Currently, the SDPD/MBSE framework enables to create a simulation definition by providing two solutions:
· By providing a multi-domain model management environment that allows integration of various simulation models built in different environments/tools into a common simulation architecture
· By providing a mechatronic simulation package the allows to create a multi-domain simulation model in a common environment
Along with tremendous monetary savings, establishing such multi-domain simulation definition gives an organization the following benefits:
· Perform quick analysis of combination of features to assess viability
· Reuse models and other artifacts while assessing viability
· Analyze the functional performance of mechatronic systems from the early development stages
· Optimize the complex interaction between mechanical, hydraulic, pneumatic, thermal and electric/electronic systems well before the first physical prototype becomes available
· Proactively engineer a critical function and improve overall product performance and quality
· Avoid design flaws, explore innovative designs and accelerate product development

Brainstorming:
1. Based on the system definition that you’ve created, think of the logical components that would be required to create a simulation model. For example, a component to represent energy storage could be a battery.

[bookmark: _Toc523920332]Exercise: Creating a simulation definition for Electric Longboard
SDPD Role: Simulation Engineer
To create the simulation definition, please refer to the Simulation of a Mechatronic Product tutorial by Dr. Vahid Salehi available on Learning Advantage.
Note: In the step where you create batch runs, create batch run for wheel radius varying from 38 mm to 44 mm. Vary the mass from 70 - 91 kg (200 lbs.) and perform multiple iterations. Also, the tutorial demonstrates a system model of an electric skateboard using 1 motor. We will be using two motors to design our electric longboard. Play with the Amesim model and try to figure out how you can add a second motor configuration to the model. At the end of the manual, you will find an image of Amesim model for an electric longboard for reference along with a downloadable Amesim model in the course home.

[bookmark: _Toc523920333]Exercise: Validating an Analysis Request
After we have completed the system simulation, we will need to provide the simulation outputs to the systems engineer to in order to create the product structure assembly.
Remember we assigned ourselves as the simulation engineer for the Analysis request? Teamcenter Active Workspace workflow is designed such that it sends a message to the participant’s inbox whenever the participant is assigned a certain task.
1. Validate Simulation Results
[image:]
In My Tasks, you will see the Speed Verification AR.
· Open the AR
[image:]

· Go to the Inputs tab
· Select Start Edits [image:]
· In the Attributes table, add the measured value for Speed and the corresponding values for Wheel radius and Mass in the Measurement column
[image:]
· Click Save Edits
· Select Perform Task [image:]in the two-step commands on the right and click Submit. This will now send the AR to the next step in the Workflow.
[image:]
Depending on the workflow template that you selected, your inbox will populate with various workflow tasks before incorporating the simulation results data into the system definition. You can go to the Workflow tab in your workflow task to see a visual image of the workflow (image below).
· Perform the necessary tasks to approve and publish the measured values of the attributes.
[image:]
· Go back to the Analysis Request and check the Results tab. You should be able to see the analysis request results published.

[bookmark: _Toc523920334]3.4 Electrical/Electronics
[image: C:\Users\eadq6n\Desktop\SDPD\Curriculum\pictures\Phase4.png]
A system consists of electrical/electronic subsystems that need be defined, analyzed and integrated one a system specification is established. These subsystems have their own lifecycles for development. This phase of SDPD/MBSE involves Electrical/Electronic architecture design, integration and optimization, again, in the context of PLM systems.
Some key characteristics of this phase include:
· Holistic & coherent E/E Architecture Design & Optimization
· Automate the Electrical Distribution System design creation, update and validation through rules-based automation
· Integrated Software Architecture & Network Design
Similar to a simulation engineer creating a simulation definition, a domain engineer working in the E/E domain areas will receive subsystem specifications through a shared environment which allows the domain engineers to design their subsystems. This provides the following benefits to an enterprise:
· Analyze feasibility and optimize across all E/E domains
· Take educated design decisions and perform early trade-off studies.
· Improve cost versus performance requirements and validate design intent as you go
· Generate HW, SW, MUX & EDS domains from the Platform
· Efficient Design, Update and Validation through generative, rules-based automation
· Create correct by construction design output and validate design intent as you go
· Effective supplier integration & automated service documentation creation
· Design, analyze & optimize multiplexed internal system networks, manually or by automation using generative synthesis driven out of timing requirements.
· Integrate & refine the SW Components & Architecture for reuse in control unit implementations, application code development and Tier1 integration
Efficient E/E architecture, design and optimization allows systems engineers to verify the subsystem requirements early in the development thereby providing optimum design specification to the downstream ECAD engineers.
We will not be covering exercises for this phase since it is outside the scope of this manual.

[bookmark: _Toc523920335]3.5 Embedded Software
[image: C:\Users\eadq6n\Desktop\SDPD\Curriculum\pictures\Phase5.png]
The fifth phase of SDPD/MBSE is embedded software development. Some of the characteristics and benefits of ESD in SDPD/MBSE are:
Characteristics
· Perform SW analysis
· Perform SW change, create Software-in-loop SW
· Compile code and verify SW change with Software-in-Loop
Benefits
1. Orchestrate development across the application lifecycle
2. Leverage open framework by integrating within this domain and with PLM
3. Facilitate Agile Development Process
Siemens supports this phase of MBSE by providing two solutions:
· Polarion Software for Application Lifecycle Management (ALM)
· Teamcenter Active Workspace for Product Lifecycle Management (PLM)
You can use Embedded Software Management in Active Workspace to represent software artifacts in Teamcenter. You can link these software artifacts to a software release artifact in Polarion using Linked Data Framework.
Using Embedded Software Management, you can create a Software Architecture component in Teamcenter. This is a logical element that represents the system definition for the embedded software. You can create placeholders for the different elements of your software architecture and then link these elements to the instance where they are implemented, for example, a Polarion Software Release. You thus create traceability between the architecture (plan) and the implementation.
As the linking is done using Linked Data Framework, ensure that your administrator has installed and set up Linked Data Framework and Embedded Software Manager.
We will not be covering exercises for this phase since it is outside the scope of this manual.

[bookmark: _Toc523920336]3.6 3D CAE & Multi-Disciplinary Optimization
[image: C:\Users\eadq6n\Desktop\SDPD\Curriculum\pictures\Phase6.png]
This is the physical product design phase of the SDPD/MBSE framework.
In this phase, the ECAD/MCAD product designer designs the physical components of the system based on the product structure created by the systems engineer/design release engineer. The simulation engineers then perform computer aided engineering activities to analyze system behavior in 3D and perform multi-disciplinary optimization.
Key activities in this process include:
· Define physical solutions, including identifying carryover parts and defining new parts, and also releasing product solutions.
· Create mechanical layout and manage mechanical design data, including PMI.
· Create electrical layout and manage electrical design data, including messages, wiring harnesses, and printed wiring boards.
· Develop and manage embedded software.
· Manage global parameters, calibration specifications, and version compatibility.
As discussed before, Product Data Management was invented to manage 3D CAD data. Although PDM was successful in meeting the objectives, industries soon realized the need for a more robust architecture that would enable exchange of the product structure data. SDPD framework allows to create a product structure in a single PLM repository that drives the physical components design. This product structure is derived from the system definition created in the PLM repository. Therefore the 3D CAD data created from the product structure is directly linked to the requirements, functions and logical components of the system definition, facilitating the closed-loop traceability of product definition.
Also, as part of the design process; you need to check that a final product meets your design requirements. This includes tasks such as measuring sizes and checking clearances, calculating component stresses and displacement, NVH, etc. You must also communicate your results to others in an effective way.
Siemens PLM provides such a solution using an integrated suite of tools that include Teamcenter Active Workspace, NX and Simcenter 3D, along with more sophisticated integrations with 1D simulation, assisting the enterprise to manage the complexities of multi-domain products and track large numbers of product and technical requirements through the design process.
Some key aspects of this solution include:
· Measureable attributes management
· Via Active Workspace Analysis Requests
· Extract from Teamcenter SDPD key performance targets
· Link these requirements to measurements in NX
· Associate analysis measurement to physical interface geometry
· Return these results to Teamcenter SDPD
· Within NX
· Definition of interfaces
· Generation of key performance indicator status visual reports
· Logical – Physical cross probing
· Bi-directions dynamic visual cross-probing between NX physical CAD models and Active Workspace logical architecture models
Similar to an analysis request for 1D simulation, SDPD supports traceability between logical architecture and physical CAD using an analysis request in context of heterogeneous design and simulation.
The following figure shows a typical user workflow for an AR for 3D cross-probing
[image: C:\Users\eadq6n\Desktop\SDPD\Curriculum\pictures\Analysis_Request_NX.png]

This solution provides the following benefits:
· Allow NX users to identify and validate key design values and to pass this data to Teamcenter’s SDPD attribute management system.
· Provide visual cross probing between logical and physical models
· Provide visual methods to track Key Performance Indicators
· Central database for KPIs
· Improved communication within engineering design
· Removes the need and risk of re-entering values.
· Provides more confident, reliable and complete view of product maturity.
· Ability you perform impact analysis to aid continuous validation process.
· Simplified documentation of processes

Brainstorming:
· Based on your engineering knowledge, list down the physical parts that we will need to satisfy the system functions.
· Create a product structure with the required parts
· What approach would you prefer to create your assembly? Top-down or Bottom-up?

[bookmark: _Toc523920337]Exercise: Creating Product Structure using Teamcenter Active Workspace
SDPD Role: Systems Engineer / Design Release Engineer
If you’re not familiar with using NX, refer to either of the following courses:
	Name of the course
	Section
	Category

	Engineering Design with NX 12
	Self-paced courses
	Academic Resource Center

	Engineering Design with NX 10
	Self-paced courses
	Academic Resource Center

1. Open your system context
· Create a new Item Called eLongboard
· Create child items to eLongboard like the image below:
2. Click on the parent eLongboard Item and create child items for subsystems and components
Your product structure should look something like the image below:
[image:]
A systems engineer/design release engineer creates a high-level product structure in the PLM system based on the logical architecture. The product design engineers then import the product structures from the PLM repository, model the components and assemblies and save the models back to Teamcenter. It is not always necessary that the product structure will reflect everything that is in the logical architecture. The objective of systems engineering is to analyze your system from different viewpoints to achieve the optimum design solution.
3. Link the logical system blocks to the item revisions from the product structure
After we have created the product structure, we need to create the system blocks with the item revision that represent the physical design of the block.
· Create trace links between blocks and item revisions
Your architecture view should look something like the image below:
[image:]
We have created an RFLP definition for the system in the PLM repository. However, we need to create the physical product definition in Native CAD environment to associate the 3D definition in RFLP.
· Save the working context

[bookmark: _Toc523920338]Exercise: Importing Assembly from Teamcenter Active Workspace into NX
SDPD Role: Design Engineer
1. Start integrated NX session
Now we will assume the role of a design engineer to model physical CAD geometry.
· Open eLongboard working context
· Note down the item number for the top level item revision in the product structure
· Select the top level item revision in the product structure that we have created and select Open > Open in NX
[image:]
This will open a Teamcenter integrated NX session.
Select the Active Workspace tab in NX. This will show an embedded Active Workspace window in NX.
[image:]
2. Open the product assembly
· Select open command in NX. You will see the Teamcenter repository.
· Search for the longboard item revision using the item id
· Open the item
· Select the template part as Assembly and open. By default, NX will not open the complete product structure. We will have to load the pending subassemblies and components separately
· Close the information dialog
3. Load product subassemblies and components
· Go to Menu > Assemblies > Components > Manage Pending Components or search for Manage Pending Components in the command finder
· You should see a list of pending subassemblies in the information dialog
· Select each subassembly 1 at a time and select Assembly load template part for a subassembly and a Model load template part for components
· If you have created further levels of subassemblies in Teamcenter,
· Select the subassembly > Make Work Part > Manage Pending Components
· Load all the subassemblies and components from Teamcenter

[image: C:\Users\eadq6n\Desktop\SDPD\Curriculum\pictures\Picture1.png]

[bookmark: _Toc523920339]Exercise: Modeling Longboard Assembly in NX
SDPD Role: Design Engineer (MCAD)
1. Model component CAD and assemblies using the Assembly definition
Based on the assembly structure in NX, model your 3D CAD components, subassemblies, and assemblies
If you have already modeled the CAD, you can import CAD part from your operating system by using the import command.
File > Import > Part > From Operating System
If you wish to not model the longboard, you can download the model files from the File downloads section of Learning Advantage
[image:]
· You should import components from the lowest level of your assembly
2. Save the CAD assembly into Teamcenter.
Make sure you have the Save JT data option checked so that you can view the CAD data in Active Workspace viewer. This option can be found in the Save Options command.
[image:]
Now we have the physical design linked to the RFLP definition as well
This enables closed-loop traceability between the system requirements and physical design.
[image: C:\Users\eadq6n\Desktop\SDPD\Curriculum\pictures\RFLP2.png]
RFLP traceability relationships
In this way, anyone touching the physical design can see the role a particular component plays in performing certain functions and satisfying requirements thereby enabling effective change and configuration management.

[bookmark: _Toc523920340]Exercise: Validate Measurements using Analysis Request
SDPD Role: Systems Engineer / Design Release Engineer
We will verify a design requirement using Teamcenter - NX Analysis Request capability.
We will verify the Dimension requirement defined in the requirements definition phase.
1. Create Attribute Definitions
· Go to your Attribute Definitions folder and create and approve the following measurable attributes as we did before for the Dimension requirement.
	Attribute Name
	Attribute Type
	Unit of Measure

	Length
	Double
	mm

	Width
	Double
	mm

	Height
	Double
	mm

These attributes represent the dimensions of the top longboard assembly. Now we will assign these to our Dimension requirement.
2. Assign measurable attributes and create an Analysis Request
· Go to you eLongboard working context. Reset [image:] the view to your last saved context if you want.
· Select the Dimension requirement.
· Add the three newly created measurable attributes to the requirement using[image:], just like we did for the Speed requirement using the following data:
	Attribute Name
	Goal
	Minimum
	Maximum

	Length
	850
	800
	900

	Width
	180
	150
	200

	Height
	110
	85
	150

· Create an Analysis Request called Analyze Longboard Dimension.
· Use the RFLP definition for Analysis Definition.
· In your AR, go the Inputs tab, and change values of the Input/Output column as Output for all the attributes using the Toggle I/O [image:] button. The design engineer will be analyzing the measurements that will serve as the output parameters.
· Send the Analysis Request to a Workflow. Use the Analysis Request State Workflow.
· In the workflow, complete the following tasks Assign simulation engineer (assign yourself as the simulation engineer to do the measurement analysis), Populate Analysis Request (as you have already done this by adding attributes, specifying Input/Output)
· Perform tasks in your workflow until the Review Analysis Request task or until the point where it says Analyzing as the Workflow status.
[image:]
3. Validate Measurement Requirement
· Open the top longboard assembly in Teamcenter integrated NX session.
· Make sure that the top assembly is your work part.
· From the embedded Active Workspace in NX, open the Analysis Request.
· Go to Inputs tab in the AR, select all the measurable attributes and select Associate to NX command [image:].
· The NX part window highlights the associated requirements.
[image:]
· You can see all the associated measurable attributes under Requirements Validation in the HD3D [image:] tab in NX.
This will associate the measurable attributes created in Active Workspace to NX. When you create a new associative measurement in NX and link the measurement to the requirement, NX performs automatic validation through check expressions thereby giving a warning or an error depending on whether the measurement does not meet the target but is within the limits or the measurement is outside the limits.
· Now we will measure each dimension of the skateboard and associate the measured value with the corresponding attributes.
· Measure the length of the longboard using the Measure Distance command, check the Associative checkbox in Associative Measure and Checking and select Dimension_Goal requirement to associate the measurement to from the list of requirements.
[image:] [image:]
Click OK
NX will automatically validate the measured dimensions against the requirements.
· Go to the HD3D Tab
[image:]
After validation of the requirement, NX shows the results using three symbols:
[image:] Passed status to show that requirement is satisfied.
[image:] Warning status to show that the requirement range is satisifed but the goal is not met.
[image:]Failed status to indicate that the requirement is not satisfied.	
· Save the NX assembly. This will save the measurement analysis and update the calculated measurements to the Analysis Request. This will send the results back to the Design Release Engineer.
· Go the the Active Workspace tab in NX and check the calculated measurements for the attribute.
[image:]
· Go to Perform Task and [image:] complete your AR

[bookmark: _Toc523920341]Exercise: Approve Measurement Analysis
SDPD Role: Systems Engineer / Design Release Engineer
· As a Design Release Engineer, you will now review the results and publish the results.
· Go to the Results tab in the AR. Verfiy the calculated measurements and select Perform Task to Approve and Publish the results.
We have now traced the design requirement back to the requirement in the RFLP definition. You can create more design requirements for subassemblies and components by creating an AR using either a Requirement or a System block.
You can specify the design requirements even before creating you CAD geometries by associating measurable attributes to a logical system block and creating an AR from the same block.

[bookmark: _Toc523920342]Exercise: Creating Analysis Request for FEA
SDPD Role: Systems Engineer
We will verify a design requirement using Teamcenter - NX Analysis Request capability
Using Simcenter 3D, we will perform Finite Element Analysis of the Longboard model
1. Create a Displacement Requirement
· Open the product structure in the Longboard Architecture context. Create a child requirement for the Deck component.
· Create a requirement called Nodal displacement with the following description: The nodal displacement of the skateboard shall be less than 10 mm.
2. Assign measurable attributes and create an Analysis Request
· Go to your Attribute Definitions folder and create and approve the following measurable attributes as we did before for the Dimension requirement.
	Attribute Name
	Attribute Type
	Unit of Measure

	Mass
	Double
	lb.

	Displacement
	Double
	mm

· Approve the attributes using the QuickRelease workflow.
· Open the Nodal displacement requirement from your Deck part.
· Associate the mass and displacement attributes [image:] to the requirement with the following data:
	Attribute Name
	Goal
	Minimum
	Maximum

	Mass
	200
	0
	200

	Displacement
	5
	2
	10

· In the same requirement, create an Analysis Request called Analyze nodal Displacement.
· Use the RFLP definition for Analysis Definition.
· In your AR, go the Inputs tab, and change values of the Input/Output column as Output for the Displacement attribute using the Toggle I/O [image:] button. The simulation engineer will be analyzing the measurements that will serve as the output parameters.
· Send the Analysis Request to a Workflow. Use the Analysis Request State Workflow.
· In the workflow, complete the following tasks Assign simulation engineer (assign yourself as the simulation engineer to do the measurement analysis), Populate Analysis Request (as you have already done this by adding attributes, specifying Input/Output)
· Perform tasks in your workflow until the Review Analysis Request task or until the point where it says Analyzing as the Workflow status.

[bookmark: _Toc523920343]Exercise: Validate Displacement in Deck using Analysis Request
MBSE Role: Simulation Engineer
1. Perform Finite Element Analysis
· Open the eLongboard System Context
· Open the Deck part file in NX
2. From the Application Tab in NX, perform Finite Element Analysis of the Deck part.
· This will ask you for selecting simulation templates, Item ID for the simulation file in Teamcenter and the Teamcenter location to save the file.
· Select the necessary template, double-click on the Item Id and select the save location
[image:]
3. Analyze Results
· After the analysis, open embedded Active Workspace from NX.
· Similar to previous steps for Dimension analysis, open the Analyze nodal displacement AR in your inbox.
· Go to the Inputs tab and associate the Displacement attribute to NX. In this case, we will not associate the Mass attribute to NX as it is the input parameter.
· We have now associated the Nodal displacement requirement to NX.
· You can check the associated requirements from the Requirements Validation tool in the HD3D tab.
[image:]
· Now, Go to the .sim simulation file in Simulation Navigator > Right-click and select Results Measure > New
· Select your FEA solution. Make the following selections and select the requirement from the Checking section.
[image:]
· Click OK
· NX pops up an error message if the requirement is not satisfied.
· Go to the Requirements Validation in HD3D tab to check if the requirement is validated.
[image:]
· Save the simulation file. This will save the displacement analysis and update the calculated measurements to the Analysis Request. This will send the results back to the Design Release Engineer.
· Go the the Active Workspace tab in NX and check the calculated measurements for the attribute.
[image:]
· When you see the results, complete your task in the Workflow.

[bookmark: _Toc523920344]Exercise: Approve Measurement Analysis
SDPD Role: Systems Engineer / Design Release Engineer
· As a Systems Engineer, you will now review the results and publish the results.
· Go to the Results tab in the AR. Verfiy the calculated values and select Perform Task to Approve and Publish the results.
We have now traced the design requirement for a component back to the requirement in the RFLP definition.

[bookmark: _Toc523920345]Summary
Learning Outcome:
1. We overviewed the current business processes for product development used in various industries. This helped us to define a context for implementing systems engineering approach.
2. We saw how systems engineering helps to enhance the traditional development processes. We got introduced to the systems engineering definition, terminologies and development process.
3. We also reviewed the benefits and challenges of implementing a Model-Based Systems Engineering Approach in product design and development.
Implementation:
We were able to successfully implement the MBSE approach in the context of Teamcenter Active Workspace using a suite of Siemens PLM Software. This allowed us to realize a digital twin of the product before production along with a digital thread. The main advantages realized during this implementation were:
· Capturing the voice of the customer as requirements
· Holistic approach in product development
· Shared understanding between different team members using a common language
· Faster design innovation
· Generating solutions at every step by understanding the complete problem
· Maximizing reuse of systems engineering data using a common context
· Frontloading the design decisions by early validation of system performance
· Design specification generation based on system architecture
· End-to-end requirements traceability
· Traceability of system/subsystem/component requirements across the development phase
· Enhanced communication and coordination between people from various disciplines

[bookmark: _Toc523920346]References
[1] Ullman, David G. The mechanical design process. Vol. 6. New York: McGraw-Hill, 2017.
[2] Gausemeier, J. and Moehringer, S., 2002. VDI 2206-A new guideline for the design of mechatronic systems. IFAC Proceedings Volumes, 35(2), pp.785-790.
[3] Adam, A., Binder, B., Bretz, L., DiMaio, M., von Dungern, O., Hooshmand, Y., Kaufmann, U., Muggeo, C., Munker, F., Pfenning, M. and Priglinger, S., 2015. 10 theses about MBSE and PLM–Challenges and Benefits of Model Based Engineering. PLM4MBSE Working Group Position Paper, Gesellschaft für Systems Engineering eV http://gfse.de/Dokumente_Mitglieder/ag_ergebnisse/PLM4MBSE/PLM4MBSE_Position_paper_V_1_0. pdf.
[4] Wikipedia.org, Product Lifecycle; https://en.wikipedia.org/wiki/Product_lifecycle
[5] Salehi, Vahid. Introduction to SDPD.
[6] Salehi, Vahid. Simulation of Mechatronic Product
[7] Friedenthal, S., Moore, A. and Steiner, R., 2014. A practical guide to SysML: the systems modeling language. Morgan Kaufmann.
[8] Siemens GTAC Documentation

[bookmark: _Toc523920347]Appendix
Amesim Model – Dual motor configuration:
[image:]

image3.png

image93.png

image94.png

image95.png

image96.png

image97.png

image98.png

image99.png

image100.png

image101.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png

image45.png

image46.png

image47.png

image48.png

image49.png

image50.png

image51.png

image52.png

image53.png

image54.png

image55.png

image56.png

image57.png

image58.png

image59.png

image60.png

image61.png

image62.png

image63.png

image64.png

image65.png

image66.png

image67.png

image68.png

image69.png

image70.png

image71.png

image72.png

image1.png

image73.png

image74.png

image75.png

image76.png

image77.png

image78.png

image79.png

image80.png

image81.png

image82.png

image2.jpeg

image83.png

image84.png

image85.png

image86.png

image87.png

image88.png

image89.png

image90.png

image91.png

image92.png

image102.PNG

