Unrestricted © Siemens AG 2017

Realize innovation.

SIEMENS

Ingenuity for life

0//24+00+/CB

Pass-by noise regulations

Pass-by noise offering

Pass-by noise engineering techniques

Pass-by noise regulations

Pass-by noise offering

Pass-by noise engineering techniques

Pass-by noise regulations European Union's measures to reduce pass-by noise exposure

SIEMENS

ource: Dublin City Council, 2012.

Number of people (in millions)

Unrestricted © Siemens AG 2017

Source: Babisch, 2002, based on WHO, 1972.

Tackle the problem at the source

- Further reduce vehicle emission
- Appropriate test methodology

ECE.R51.03

In the mean time in the European Parliament...

Update March 2016:

After negotiations between EC and EP, a compromise was reached and approved by vote in the EP in 2014-2015

3-phase introduction in 2016, 2020, 2024 At these dates, all new vehicle types should comply to new limits

2 years after – so 2018, 2022, 2026 – all new production vehicles should comply to these noise limits

The EU directive is called "Directive 2007/46/EC"

Further documented in European Regulation No 540/2014

What are the differences between the old and new ISO standard?

IMPLICATIONS What is the difference in speed between the old and new ISO standard?

SIEMENS

At which speed should you enter the track with new ISO? NEED for guidance

IMPLICATIONS How do the test conditions between old and new ISO change?

SIEMENS

Old ISO 362	New ISO 362					
Only Test WOT	Test WOT and Constant speed					
More test data generated that needs to be combined into the final pass-by noise value						
	s-by noise value					
Old ISO 362	s-by noise value New ISO 362					
Old ISO 362 Always test gear 2 and gear 3	s-by noise value New ISO 362 Gear to be tested depends from power to mass ratio of vehicle					

Some vehicles tested in very high gears means that engine speed is very low and contribution of engine decreases and importance of tires increases

Impact of new ISO 362 – Powertrain versus tires

New pass-by noise limits

• New pass-by noise limits will be harder to comply to: - 6 dBA for passenger vehicles

M-vehicles: for carriage of passengers

		2016	5 2020	202	24
Vehicle Category	Vehicles used for the carriage of passengers	Phase 1	Phase 2	Phase 3	Your regular car
	$PMR \leq 120$	72	70	68	
	$120 \leq PMR \leq 160$	73	71	69	
M_1	PMR > 160	75	73	71	Sport cars!
	$PMR > 200$, no. of seats ≤ 4 R-point height < 450mm from the ground	[•] 75	74	72	
>	$M \le 2.5 \text{ t}$	72	70	69	
M	$2.5 t < M \le 3.5 t$	74	72	71	
IVI2	$M > 3.5 \text{ t}; P_{n} \le 135 \text{ kW}$	75	73	72	
	$M > 3.5 \text{ t}; P_{\text{n}} > 135 \text{ kW}$	75	74	72	
	$P_n \leq 150 \text{ kW}$	76	74	73	
M_3	$150 \text{ kW} \le P_n \le 250 \text{ kW}$	78	77	76	2026
	$P_n > 250 \text{ kW}$	80	78	77	

N-type vehicles: for transportation of goods

		Different categories allow for various regional type of vehicles			De
17 1 . 1			2016	2020/22(N2)	2026
Vehicle Category	Vehicles used for *	arriage of goods	Phase 1	Phase 2	Phase 3
NT	$M \le 2.5 ext{ t}$		72	71	69
1N1	M > 2.5 t		74	73	71
NT	$P_n \le 135 kW$		77	75	74
IN ₂	$P_n > 135 \ kW$		78	76	75
	$P_n \le 150 \ kW$		79	77	76
N_3	$150 \text{ kW} < P_n \le 250$	kW	81	70	77
	$P_n > 250 \text{ kW}$		82	81	79

After a lot of protest from different organizations reduced from 81dB(A) to 79dB(A).

ASEP Additional sound emission provision

- M1 and N1 vehicles have to comply with additional testing: ASEP
- Additional Sound Emission Provisions cover higher acceleration and higher engine speeds
- ASEP test NOT mandatory to execute when applying for type-approval, but vehicle needs to comply
 - → ASEP tests will be required frequently, some A-OEM's decide to test each vehicle

Idea:

vehicle pass-by noise needs to remain within certain limits when testing at different speed and RPM conditions then the ones tested during normal PBN test

→ ASEP tests require high amount of WOT test in different gears AND engine speeds

Pass-by noise regulations

Pass-by noise offering

Pass-by noise engineering techniques

Unrestricted © Siemens AG 2017 Page 14

Track-only configuration

TRACK

IN-VEHICLE

No instrumentation in-vehicle:

- Kickdown estimated from speed
- RPM estimated from speed

Track-based configuration

TRACK

In-Vehicle configuration

In-Vehicle configuration

LMS Smart PBN Driver's Aid app Guiding the driver to be successful

SIEMENS

Future of exterior pass-by noise testing? Multi-vehicle solution

LMS pass-by noise testing

Your key benefits

1. Efficiency & Ease of Use

- Talking the language of the standards
- Online visualization & monitoring, Driver's Aid
- Intermediate report, Validation & Reporting

2. Turning Data Into Assets

- Data Documentation before the test
- Data searching and reporting after the test
- Data Management company wide

3. Engineering Insight

- PBN Engineering
- Advanced post-processing capabilities
- More insights for the PBN engineer
- Efficient PBN Data Comparison

Pass-by noise regulations

Pass-by noise offering

Pass-by noise engineering techniques

LMS Pass-by noise engineering solutions Powered by LMS Test.Lab & LMS SCADAS Platforms

Reduce exterior noise to meet regulations Pass-by Noise Engineering – Contribution Analysis

Pass-by noise Airborne Source Quantification (ASQ) in a nutshell

Sources	Transfer		
Engine – Exhaust – Tires – Intake			
Based on ASQ technologyTest BasedImage: Image:	Test BasedUse Volume Velocity source to measure transfer functions (NTFs)		
Simulation based	Simulation Based		
<text></text>	Compute NTFs for a specific acoustic engine bay design (FEM AO solver)		
Uprostricted @ Sigmons AG 2017			

Pass-by noise engineering –

Time domain source contribution analysis

SIEMENS

Pass-by source contribution analysis *Contribution plots*

SIEMENS

tire type A – Gear 3 Acceleration

On the road to Pass-by noise synthesis ... Why Pass-by noise ASQ is the right technology to control?

SIEMENS

Built upon the Pass-by noise ASQ technology

Make Early predictions of Pass-by noise based on engine test bench measurements

Summary Efficient pass-by noise testing

SIEMENS

EASY & FAST to SETUP

- One cable (power + measurement)
- LED feedback
- Flexibility in how to instrument sensors

- Software guidance (e.g. suggestion for speed)
- Driver's aid (incl. beep)
- Efficient reporting

EXTENDABLE towards a passby noise engineering solution

• Track-based vs. in -vehicle

Adding sensors (microphones)

HELP to efficiently test according to new ISO standard

Simcenter solutions for Automotive NVH & Acoustics

SIEMENS

8 D

OK Apply Ca

● / / 1 冬 ↑ ● ◆ + / ④ ● | 即 ほ 0 団

Unrestricted © Siemens AG 2017

Realize innovation.

SIEMENS

Ingenuity for life