

Azipod® D presentation Siemens Simcenter Nordic Conference 2018

Integrated marine solutions for more productivity Teemu Rauhala, Structural Analysis

Agenda

- Azipod[®] technology
- Development history
- Video
- Azipod[®] D propulsor
- Dimensioning principles
- FE analysis with Simcenter[™] 3D

Azipod[®] technology

- Azipod[®] is a registered trade mark of ABB
- Azimuthing electric propulsion and thruster system
- Electric motor is inside a submerged pod
- Speed controlled fixed pitch propeller
- Propulsion module can be rotated 360 degrees around its vertical axis

Development History of ABB Propulsion Products

2015 Azipod[®] D introduction 2011 New Azipod[®] C factory in Shanghai 2010 Order for n:o 100 Azipod[®] vessel,

2010 Order for n:o 100 Azipod[®] 2008 Azipod[®] XO introduction 2007 New Azipod[®] factory in Helsinki

2004 Azipod[®] CZ deliveries for drilling rig

2001 CRP Azipod[®] introduction

2000 Azipod[®] C introduction

1995 1st Cruise Vessel application, "*Elation*"

1994 1st Icebreaker application "*Röthelstein*"

1989 Prototype installation "Seili"

1987 Original Azipod[®] Idea

ABB

©ABB © ABB Group May 15, 2018 | Slide 4

ABB Azipod® Propulsion:

https://www.youtube.com/watch?v=skMd8Yi6th8

- Hybrid cooling (air / water cooled)
- Electrical steering
- Power range up to 7 MW
- Available without nozzle (DO series) for high speed propulsion or with a nozzle (DZ –series) for low speed, high thrust applications
- Propeller diameter in the presentation example is 3.6 m
- The results and illustrations in this presentation are based on early stage feasibility studies and not the final product

Dimensioning principles

- The load cases considered are divided to:
 - High cycle loads, typically representing normal cruising (autopilot steering course keeping)

- Low cycle loads (steering system performance tests, crash stop)
 - Recommended practice for crash stop is to perform a pod-way crash stop; by turning the Azipods[®] instead of reversing the rotation

• Extreme and special loads (case dependent such as propeller blade break, breaking order at collision, DP operation etc.)

Geometry preparation

- Simulation was carried out using Simcenter[™]
 - FE analysis with Simcenter 3D
 - CFD calculation with STAR-CCM+
- Normally an idealized part (i-part) is created
- 3D model preparation for FE includes:
 - Removing unnecessary details
 - Stitching edges of plates together
 - Splitting the model to suitable entities (volumes and surfaces)
- Usually working on assemblies makes modifications easier than working on a model consisting of several parts joined together.

FE model structure

- Modular FE model structure based on assembly.
- Advantages:
 - Enables easy local modifications without need of extensive re-meshing of entire model
 - Possibility to combine new and existing FE models
 - Quicker analysis of design variations
 - All changes and analyses can be based on one "master" model
 - Can be connected by various contact, matching mesh / glue etc. methods
- The illustration shows different components in colours

FE model structure

- FE meshing:
 - Plate surfaces are modeled with shell elements
 - Complex shapes with solid elements
 - Additional masses with mass elements
 - Bolts with beam elements
 - Bearings with spring elements
 - Different connection elements (bolt heads etc.)
- Loads:
 - Point loads
 - Pressure loads
 - Accelerations
- Constraints:
 - Case dependent

Structural strength

- Animations may be utilized to understand, which deformations are mainly contributing to stresses.
- Fatigue strength:
 - Shafts
 - Welds
 - Typically defined by
 - Analysis of nominal stresses and application of stress concentration factors
 - Or by hot-spot method

Eigenmode analysis

- Added mass elements are added to the structural FE model.
- The most typical excitation frequencies must be avoided:
 - Propeller excitations
 - Motor excitations
 - Other case dependent excitations

Linear and non linear analysis

- General structural stresses and eigenmodes are solved with linear models
- Complex bolt joints may be modeled as frictional contacts

Final documentation

- The final "as-built" product must be analyzed and documented.
- The calculation set may include for example:
 - Shaftline analysis
 - Hull analysis
 - Propeller analysis
 - Steering module and slewing bearing analysis

Questions / comments?

Contact: Teemu Rauhala <u>teemu.rauhala@fi.abb.com</u> +358 503323892

Link: <u>Azipod® at ABB</u> http://new.abb.com/marine/systems-and-solutions/electric-propulsion/azipod

Videos: <u>Azipod® D</u> https://www.youtube.com/watch?v=9Mal2ouinpo <u>ABB Azipod® propulsion unit assembly Timelapse</u> https://www.youtube.com/watch?v=lvHb4XTkCOA <u>ABB Azipod® Propulsion</u> https://www.youtube.com/watch?v=skMd8Yi6th8

Thank you for your attention!

