$\bigcirc \bullet \bigcirc$

Discover Better Designs, Faster!

Driving Product Innovation Through Design Exploration

Realize Innovation.

111.1.0.1.7

Executive Summary – Modern Engine Design

Unrestricted © Siemens AG 2017 Page 11 2017.MM.DD Automotive engine design is a complex, and often iterative process, aimed at satisfying a multitude of attribute objectives (power, efficiency, durability, emissions, and weight) while minimizing material and manufacturing costs.

Whilst simulation has long played a key role in validating designs, its usage to discover new, higher performing, innovative designs has been previously limited.

This presentation highlights how modern **Process Automation, Simulation** and **Design Space Exploration** using **HEEDS MDO** deployed together with LMS Imagine.Lab can power engineers to **discover better designs,** *faster*

Case Study: Engine Performance & Fuel Consumption

The Challenge (Objectives):

- Minimize Brake Specific Fuel Consumption (BSFC)
- Maximize the Brake Mean Effective Pressure (BMEP)

System Requirements (Constraints):

- BMEP greater than 10 bar
- Maximum cylinder pressure less than or equal to 75 bar

Design Variables:

Shape:

- Intake maximum lift
- Intake open duration
- Exhaust maximum lift
- Exhaust open duration

Location:

- Valve timing
- Valve overlap

Case Study: Engine Performance & Fuel Consumption

Design Variables:

- Six independent variables are used to modify valve lift profiles for cylinder intake and exhaust ports.
- For each design, these variables are used to update the lift curve used directly within the Amesim model

Name	Minimum	Baseline	Maximum
Intake Maximum Lift [mm]	8	10	12
Intake Opening Duration [deg]	230	287	345
Exhaust Maximum Lift [mm]	8	10	12
Exhaust Opening Duration [deg]	230	287	345
Timing [deg]	-20	0	20
Overlap [deg]	10	20	60

Unrestricted © Siemens AG 2017 Page 13 2017.MM.DD

Case Study: Engine Performance & Fuel Consumption

Process Automation:

Process Automation Python Portal

Python is used to modify the baseline valve motion based on the variable values being used

Python Update lift curve files Generate image

Unrestricted © Siemens AG 2017

Process Automation LMS Amesim Portal

The LMS Amesim Portal is utilized to associate component input and output parameters with variables and responses in HEEDS

File: Inp

An

LMS Amesim

2017.MM.DD

LMS Amesim Read updated file Solve engine analysis

working/amesim/Si	ngleCyl_updated/SingleCyl.	e							
pe	Amesim Object	•	Properties	Value	^				
omponents 🔶	eng_camaCYLH010]		IVO (reference Intake	Advance_IVO					
	eng_flowpGTFPL001]		FVC (reference Exhau	Delay FVC					
	cfd1d_strTHSNR000]		N/Ofile (angular positi	B/O					
	eng_th_teENGTS001]				aloCul undated\SinaloCul				
	eng_remoGLBAS21]		EVCfile (angular pos		giecyi_upuateu (sirigiecyi.		e		
	cfd1d_cnxVEENG000]		Dvin (intake valve he	Output Type	Amesim Object	•	Variable	Entities	Properties
	eng_valveNGVDEF03]		Dvout (exhaust valve	Amesim Components 🗦	Basic Variable 🔶		input (input signal)	Time 🄶	At: O First
	Real Parameter	Ξ	win (intake seat widt	Amesim Lines	State Variable		output (ouean value) 🔶	Value	l ast
	Integer Parameter		wout (autoust cost u		cfd1d_strTHSNR000]		angleglob (rank angle)		
	eng crap NGCRK511		wout (exhaust seat v		eng_th_teENGTS001]		teta (sampligle or time)		O All
	dynamic r IGRECEI01		Dsin (intake valve st		eng_steadSTEADY12]		tampon (laspled value)		C Range:
	dynamic_r_IGRECEI0]		Dsout (exhaust valve		eng_meanCYCLE21]		tampon2 (lapling time)		Start at:
	dynamic tIGTRANS01		betain (intake valve		cfd1d_strSIMPLE00]				End at:
	dynamic tIGTRANS01		betaout (exhaust val		cfd1d_strSIMPLE00]				
	cfd1d_jncPORTS002]		Duin off (intoles unlise		eng_combSENSED]				
	cfd1d_jncPORTS002]		Dvinett (intake valve		signalsink_4 [SSINK]				
	cfd1d_cnxUTENG000]		Dvouteff (exhaust va		cld1d_obs_NALPL000]				
	constant [CONS00]		Linmax (maximum ir		ctop [STOP0]				
	constant_1 [CONS00]	_	Loutmax (maximum		nowersens v [PTR10]				
	cfd1d_str_SIMPLE001	*			eng mean CYCLE211				
					signalsink 1 [SSINK]	Ξ			
					eng meanCYCLE21]				
					signal_swSWITCH01]				
					eng_glbaGGLBA11]				
					constant_2 [CONS00]				R
					end press ENGDSE011	Ψ.	L]]	

Efficient Design Exploration

Scalable Computation

Simulation Execution

Highly Constrained Design Space

Design Exploration

Highly Constrained Design Space

Design Exploration

Design Exploration

Unrestricted © Siemens AG 2017

Page 23 2017.MM.DD

Design Trends

Design Trends

A heatmap plot can be used to look at the Pareto set designs and view trends among variables and responses.

The coloring confirms that as BMEP increases, BSFC increases, Duration Exhausts AG 2017decreases, and Overlap increases.

Unrestricted © Siemens AG 2017 Page 25 2017.MM.DD

Insight and Discovery

SIEMENS

Insight and Discovery

Design Trends – Pareto Set

A self-organizing map is used to group designs based on similarities in particular design parameters.

Here designs in the Pareto set have been broken into four groups.

These four groups are color coded and linked with other plots to help us in visualizing the trends.

Design Trends – Pareto Set

Here the group of designs with the lowest values of BSFC are select in all three plots. The parallel plot shows the values the variables take for the designs in this group.

Unrestricted © Siemens AG 2017 Page 29 2017.MM.DD

Design Trends – Pareto Set

Here the group of designs with the highest values of BSFC are select in all three plots. The parallel plot shows the values the variables take for the designs in this group.

Unrestricted © Siemens AG 2017 Page 30 2017.MM.DD

Summary

- Demonstrated process automation to simplify virtual prototype construction
 - Python: Pre-processing and visualization
 - Amesim: Engine performance prediction
- Demonstrated that scalable computation hardware and software can be effectively used to accelerate virtual prototype testing
- 1000 designs successfully evaluated in 2 hours
- Proved that intelligent search can help engineers to discover better designs, faster
 - Discovered family of designs that demonstrate tradeoff between fuel consumption and power generation
 - Identified critical design variables and relationship between design variables, fuel consumption, and power generation

Summary

Efficient Exploration

Scalable Computation

Process Automation

Insight & Discovery

SIEMENS

Ingenuity for life

Unrestricted © Siemens AG 2017

Page 32 2017.MM.DD

specialistEasy to deploy a

Unrestricted © Siemens AG 2017 Page 33 2017.MM.DD

Discover Better Designs, *Faster!* HEEDS

Multidisciplinary Design Exploration Platform

- Accelerate design process with automated workflow
- Explore early & often with a streamlined process
- Increase product knowledge with multi-variant analysis
- Discover better designs faster with automated intelligent search
- Assess design robustness
- In PLM context, configurations are stored, managed and can be reused
- Easy to use no need to be an optimization specialist
- Easy to deploy across organizations

"HEEDS drastically reduces correlation time." — Erik Wendeberg, Chalmers

