Integrated dynamic testing and analysis approach for model validation of an innovative wind turbine blade design

2018 Simcenter Nordic Conference May 3 & 4, Hotel Waterfront Göteborg, Sweden

Siemens Industry Software: Emilio Di Lorenzo, Simone Manzato, Bart Peeters

CEKO Sensors: Kasper Reck-Nielsen

DTU Wind Energy: Peter Berring, Marcin Luczak

DTU Wind Energy Department of Wind Energy

Presentation outline

- Introduction to DTU Wind Energy
- Motivation and objectives
- Research team
- Object of investigation
- Test setup
- Results
- Conclusions
- Future outlook
- Acknowledgements

DTU

Few years ago

3 DTU Wind Energy, Technical University of Denmark

DTU

Test identification: MIF_1 mode_indicator ordinary Ims Primary identification: MIF_1 LMS INTERNATIONAL Function class: mode_indicator Log 0.0 0.0 0.01 0.005 0.005 0.004 0.003 0.002 0.001 0.0006 0.0005 0.0004 0.0003 0.0002 0.0001 100 200 260 Нz

Few years ago

Few years ago

DTU Wind Energy

Østerild Test Centre 2014

6 DTU Wind Energy, Technical University of Denmark

DTU Wind Energy

	45 m test stand	25 m test stand	15 m test stand			
Maximum bending moments on test stands						
Static	20.0	3.5	1.0	MNm		
Dynamic, amplitude	6.0	1.0	0.4	MNm		
Maximum deformations during test						
Static tip deflection	13.5	10.0	5.0	m		
Dynamic tip-to-tip	11.0	6.0	4.0	m		

10 DTU Wind Energy, Technical University of Denmark

DTU Wind Energy

11 DTU Wind Energy, Technical University of Denmark

Motivation and objectives

IEC 61400-23:2014 © IEC 2014 – 25 –

10.4.2 Natural frequencies

As a minimum, the first and second flatwise and first edgewise frequencies shall be measured. The mass of the test instrumentation can influence the results of the natural frequency tests.

10.4.3 Optional blade property tests

Testing of other blade properties may be of interest. These may include (but are not limited to):

- damping; mode shapes;
 - creep;
- mass distribution;
- stiffness distribution.

Research teams

• International, Intersectoral and Interdisciplinary

13 DTU Wind Energy, Technical University of Denmark

Motivation – Digital Twin of the blade

Object of investigation

Object of investigation

Object of investigation

• FEM model of the blade with the measurement points

Modes from FEM model

Test setup - overview

18 DTU Wind Energy, Technical University of Denmark

Test setup free free support

DTU

Test setup: Excitation

20 DTU Wind Energy, Technical University of Denmark

Test setup: Response

Measurement – software

22 DTU Wind Energy, Technical University of Denmark

Measurement - monitoring

er inn	Comparison	Bit Lower Lower ()	
			Aut Salas
18 (19) (19)	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Array Distance
	*	The second s	Series Diffe
		-	See Con
			The second secon
	a /		
			in month
5.8	E Channel annuner	Second Second all Streams of Mile Stre	Concession in which the
- Commentanta			Constanting of the local division of the loc
the American States	14 2 10 10 10 10 10 10 10 10 10 10 10 10 10		2 A M A I
11 11 12 12 12 12 12 12 12 12 12 12 12 1			
1 1 S Descention Stringer Council and State			- # C + II -
0 B C B H H B J B			

23 DTU Wind Energy, Technical University of Denmark

Stabilisation Diagram

24 DTU Wind Energy, Technical University of Denmark

Mode frequencies, damping and Auto MAC

 Image: Mode 1: 4.050 Hz, 0.33 % AMPS

 Image: Mode 2: 9.353 Hz, 1.63 % AMPS

 Image: Mode 3: 10.959 Hz, 0.41 % AMPS

 Image: Mode 4: 11.792 Hz, 0.87 % AMPS

 Image: Mode 5: 21.647 Hz, 0.41 % AMPS

 Image: Mode 6: 29.979 Hz, 0.87 % AMPS

 Image: Mode 6: 29.979 Hz, 0.87 % AMPS

 Image: Mode 6: 29.979 Hz, 0.87 % AMPS

 Image: Mode 7: 34.281 Hz, 0.25 % AMPS

 Image: Mode 8: 43.455 Hz, 2.12 % AMPS

 Image: Mode 9: 48.930 Hz, 0.27 % AMPS

Mode shape – 1st flapwise

26

Mode shape – 2nd flapwise

Mode shape – 1st edgewise

Mode shape – 1st torsion

Results: Experimental Modal Analysis

Results: comparison FE vs Experimental

FE model	Experimental analysis		
Natural frequencies	Natural frequencies	Damping ratios	
4.15 Hz	4.05 Hz	0.27%	
9.82 Hz	10.97 Hz	0.41%	
11.42 Hz	11.81 Hz	0.78%	
36.26 Hz	43.08 Hz	1.39%	

Results: CEKO optical accelerometer

Results: CEKO optical accelerometer

33 DTU Wind Energy, Technical University of Denmark

Conclusions:

- Different excitation techniques applied (impact, random, stepped)
- ICP and optical contact sensing principles used and assessed
- Modes are well separated
- All parameters of the modal model of the full scale blade estimated within 200 [Hz] bandwidth:
 - natural frequencies,
 - mode shapes
 - damping ratios
- Good consistency of the results from different methods and FE model

Future outlook:

- Investigate further the frequency difference for the Torsional mode
- Test-simulation correlation, model validation and updating,
- Uncertainty Quantification
- Test on the 2nd blade
- Pull and release, strain, output only modal analysis
- Dissemination:
 - ISMA, International Conference on Noise and Vibration Engineering
 - WindEurope Summit,
 - IMAC Conference & Exposition on Structural Dynamics.

Pull and release free vibration test:

DTU

Pull and release test:

37 DTU Wind Energy, Technical University of Denmark

Pull and release test:

38 DTU Wind Energy, Technical University of Denmark

Pull and release test:

Differencies between the tests:

- Clamped free support configuration
- Flapwise orientation
- Additional mass from cables and "saddle"
- Output only signals
- Stain gauges

Acknowledgements:

- Siemens Industry Software: Emilio Di Lorenzo, Simone Manzato, Bart Peeters
- CEKO Sensors: Kasper Reck-Nielsen
- DTU Wind Energy: Peter Berring, Federico Belloni, Sergei Semenov, Steen Hjelm Madsen, Kim Branner, Philipp Ulrich Haselbach
- The experimental work described herein has been conducted using mechanical testing and measurement equipment from Villum Center for Advanced Structural and Material Testing (CASMaT). The support from Villum Fonden (Award ref. 00007293) is gratefully acknowledged.
- This work was supported by the Danish Centre for Composite Structures and Materials for Wind Turbines (DCCSM), Grant no. 09-067212 from the Danish Strategic Research Council.
- The work is supported by the Danish Energy Agency through the Energy Technology Development and Demonstration Program (EUDP), Grant No. 64016-0023. The supported project is named "BLATIGUE: Fast and efficient fatigue test of large wind turbine blades", and the financial support is greatly appreciated.