

LES of gas turbine combustion

Daniel Moëll, Siemens Industrial Turbomachinery AB

Restricted © Siemens AG 20XX

siemens.com/power-gas

Outline

- Introduction
- Atmospheric combustion rig description
- Computational model description
- Computational results
- Summary

Restricted © Siemens AG 20XX Page 2 04.05.2018

Introduction Background

Increasing demand on fuel flexibility on the gas turbine market.

- Accurate CFD predictions are becoming more and more important to predict primary and secondary effects
 of fuel flexibility
- Importance of good simulation models to predict secondary effects of combustion, such as combustion dynamics and other transient phenomenon

The aim of the performed work is to:

• Investigate the predictive capabilities of unsteady CFD with respect to flame shape and position as well as flame dynamics

Introduction: Burner description SGT-800 3rd generation DLE burner

Introduction: Atmospheric combustion rig description

Page 5 C

04.05.2018

Daniel Moëll / PG DG

SIEMENS

Ingenuity for life

Computational Model Description

Turbulence treatment:

• LES – Smagorinsky

Chemistry treatment:

• FGM + PDF integration

Mesh:

• 29M polys

Air inlet:

• Blue arrow

Main Fuel Inlet

Red arrow

Pilot fuel inlet

Red circle

Restricted © Siemens AG 20XX Page 6 04.05.2018

(b) Mixing and reaction

iel Moëll / PG DG

SIEMENS

Ingenuity for life

Pressure trace from experiments and corresponding location in CFD

CFD Results LES Dynamics

SIEMENS Ingenuity for life

Data along the center line plotted as function of time:

- Forward stagnation point is moving around the burner exit.
- Flame is pulsing axially.
- Fluctuations in composition upstream the flame.

Restricted © Siemens AG 20XX Page 9 04.05.2018

The Precessing Vortex Core

SIEMENS Ingenuity for life

PVC Frequency around St = 0.7

Restricted © Siemens AG 20XX

Page 12 04.05.2018

CFD Results LES Dynamics

Reaction

SIEMENS Ingenuity for life

FFT of the center line data:

Broadband noise upstream the flame, only ٠ distinct Strouhal numbers (frequencies) downstream the flame

Restricted © Siemens AG 20XX Page 14 04.05.2018

Summary

LES + FGM has been used successfully to predict the flame behavior in a Siemens gas turbine burner fitted to an atmospheric combustion rig

- Flame shape and position agrees well with OH-PLIF measured data
- Pressure trace agrees well between CFD and Experiments
- The flame dynamics is studied in detail revealing details of which frequencies may be dominant for a specific burner.
- The acoustics is well predicted with the LES model

Thank you for your attention!

SGT-800

Restricted © Siemens AG 20XX Page 16 04.05.2018