

JT Validation - Panel Session

Andy Attfield

Siemens

SEPTEMBER 12 -14

2010 International Conference

VISUALIZING THE FUTURE

JT Validation – Panel Session

Sept 2010

Andy Attfield

Product Manager, Open Tools Siemens PLM Software

Introducing the Panel....

Practitioners:

- Brad Whitmore P&G
- Dan Mason CAT
- Jeff Stevens GM
- Ilan Weitzer Ford
- Reinhold Klass Daimler

JT Validation Working Group Members

- Surveying workflows, practices and tools
- Recommend process and tool requirements
- Developing best practices

Jeff Jensen Boeing Kai Schwebke/Reinhold Klass Daimler Jeff Stevens GM Ilan Weitzer Ford Dale Nicholls Bosch Chrysler Vikal Sachdeva Vern Tranel/Kevin Kulak Caterpillar Mark Stowe Theorem Solutions Siemens CT Damir Ratkovic Brad Whitmore/Guido Gomoll Procter & Gamble Parviz Rushenas Autodesk Nate Hartman Purdue University Siemens PLM Software Andy Attfield WHITE PAPER

Agenda

- Andy Introduction: The case for JT Validation
- Panel JT Validation current practices
- Andy JT Validation Resources from Vendor Members
- All Questions for the Panel

JT Trend - broad adoption and process maturity

JT - 3D interoperability asset feeds PLM processes

- PLM application interoperability
- NX MultiCAD solution, Tecnomatix data acquisition
- Increased Reliance on JT data
- Broad use as CAD independent visual BOM
- Scalable content and multiple workflows

"3d4AII"

- Bosch

"Everyone talks about the same car"

- BMW

"3D for everyone, everything in 3D"

- TML

"JT enabled visualization and Interoperability"

- Ford

"3D annotated model based solution"

- Honda

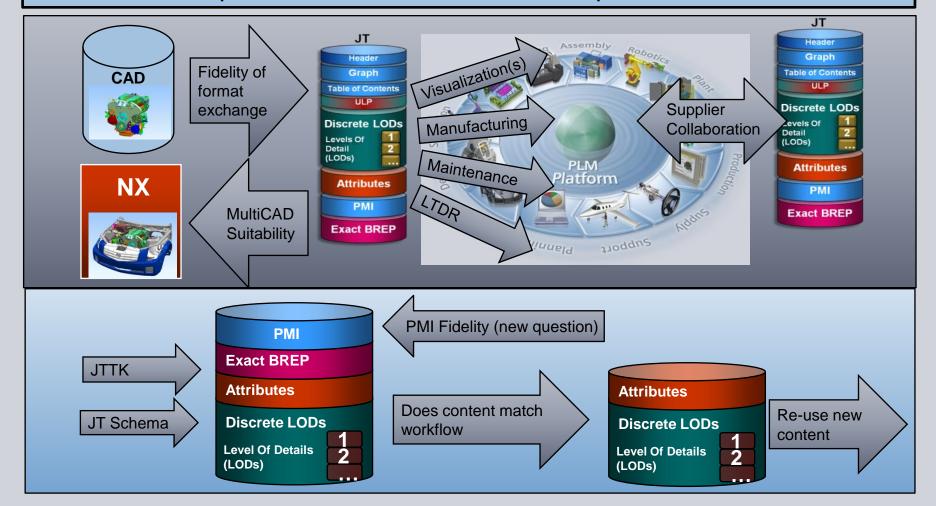
"Powerful, affordable standard evolving from Digital Engineering Visualization to Process Data Format"

- Daimler

The case for Validation – JT is no exception

Data Processes

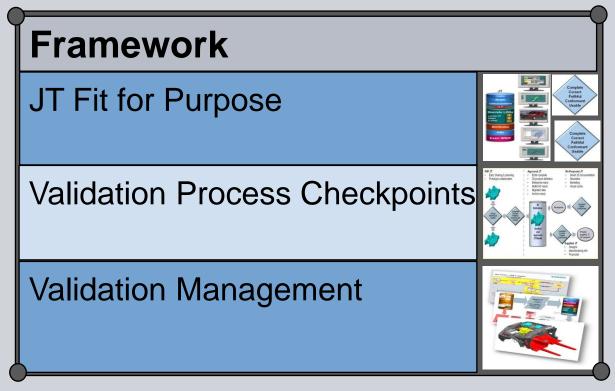
- Publishing the completed revision of a design
 - Correct JT content representing the completed design entering PLM processes
- Checking fidelity after format exchange
 - For non-Parasolid based systems, JT becomes source geometry derived to a measurable fidelity
- Interoperability workflows
 - Meeting paired systems' combined workflow/data requirements
 - MultiCAD Open to the tools of choice (CAD, CAM, CAE etc)
- Supplier collaboration
 - Meeting the recipients corporate data standards
 - Meets security IP protection needs.
- Archival (LTDR)
 - Ensuring JT information can be re-interpreted and re-used


JT Business Processes

- Mock-up
- Geometric Analysis
- Reference Design
- Geometric Edit
- Styling
- Manufacturing
- Tolerance Analysis
- Manufacturing Layout
- Component inspection
- Bid
- Maintenance Schedule
- Catalogue of parts
- Contractual Signoff

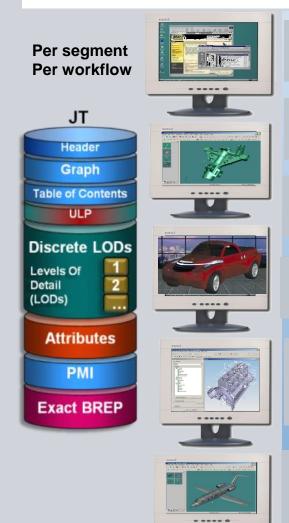
"Unique" Characteristics of JT validation

- Solving diverse business processes from a single JT source
- Creates a unique combination of validation requirements



JT Open TRB - JT Validation Working Group

- Workflows, practices and tools
- Process and tool requirements
- Developing best practices
- White Paper



© 2009. Siemens Product Lifecycle Management Software Inc. All rights reserved

JT Validation Framework:- JT Fit for Purpose

Contents:- Valid JT file can be read by JT Toolkit JT has suitable content for the intended workflow(s)

Graph:- Fidelity and Usability of Product Structure Correct components for workflow

LODs:- Usability of tessellation From photo realistic, to assembly browsing, to factory layout

Attributes:- Complete, MultiCAD

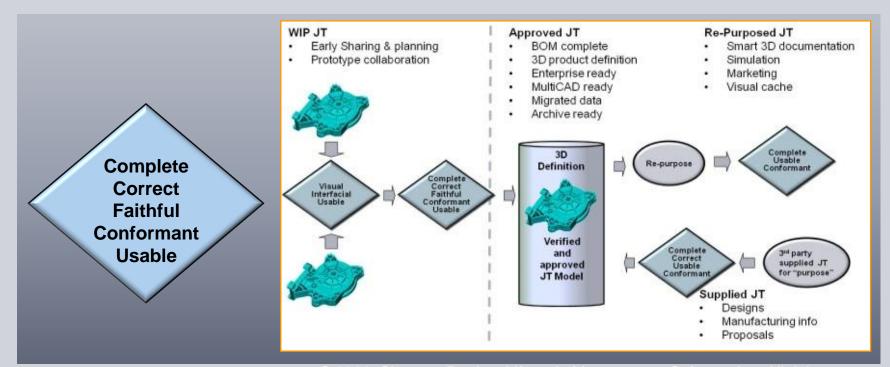
Semantics for intelligent import, Identifiers persist associativity

PMI:-

semantically correct for CAM automation or tolerance stack-up Visual fidelity meaningful to manufacturing engineer

Precise Geometry:-

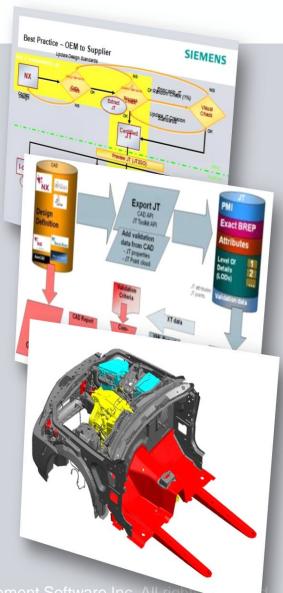
Valid Parasolid with suitable fidelity Measurement, analysis, reference geometry, synchronous edit



JT Validation Framework: Process Checkpoints

Identifies 4 validation points and their characteristics in the JT life-cycle

- 1. WIP JT
- 2. Approved JT
- 3. Re-purposed JT
- 4. Supplied JT


- "Early usability across Process interfaces"
- "Fit for purpose and Faithful to source data"
- "Content change is fit for new purpose"
- "Single source data standalone checks multi-usage"

SIEMENS

JT Validation Framework: Management

- Validation is managed and takes place in a business workflow
 - Triggered, Scheduled and PDM managed
 - Starts with CAD data quality
 - Translation process
 - Fidelity check
- The process provides valuable metrics
 - Indicates BOM completion
- JT files can have Conformance levels associated with their intended use
 - Content and quality
- Exceptions must be marked and managed
 - Rework
 - Continue with constrained use

Agenda

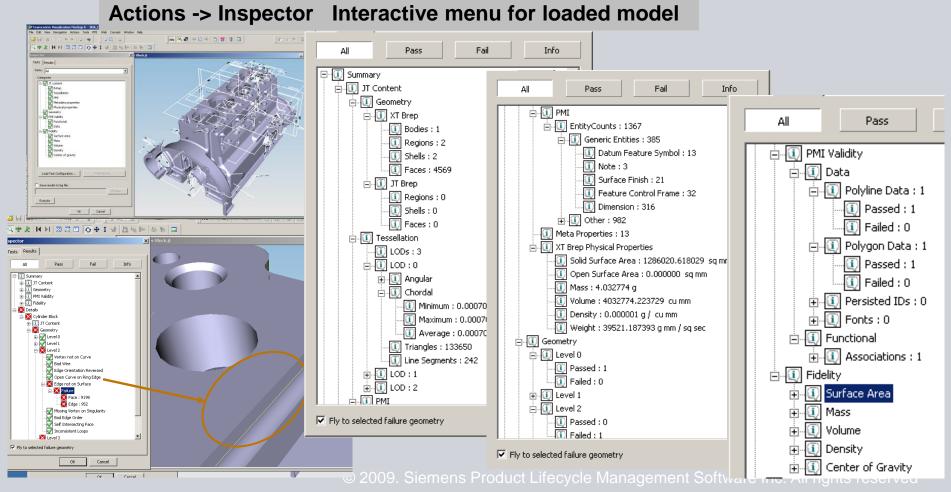
- Andy Introduction: The case for JT Validation
- Panel JT Validation current practices
- Andy JT Validation Resources from Ven
- All Questions for the Panel

- Brad Whitmore P&G
- Dan Mason CAT
- Jeff Stevens GM
- Ilan Weitzer Ford
- Reinhold Klass Daimler

Agenda

- Andy Introduction: The case for JT Validation
- Panel JT Validation current practices
- Andy JT Validation Resources from Vendor Members
- All Questions for the Panel

Resources


CAD best practices:

- Specifying Original CAD Quality
 - Product Data Quality (e.g. NX Check-Mate)
 - Using well defined Design standards and processes
 - Check original CAD data is good quality
 - Check appropriate data for translation
 - Correct CAD data at source
- Specifying JT configuration file to match workflow standards
 - Fit for purpose
 - Correct and usable JT content
- Review Translation logs and output

Resources:- JT Inspector

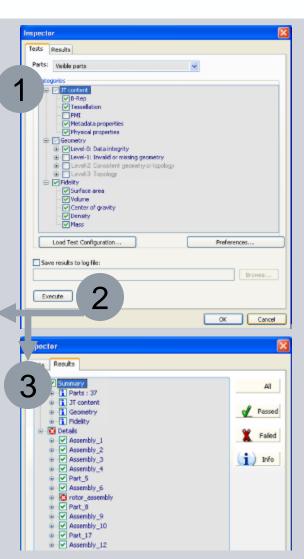
Ships as part of Teamcenter Lifecycle Viewer

JT Inspector

	JT Segment	Content	Validity	Fidelity
Heade Grap Table of Co ULP Discrete Levels Of Detail (LODs) Attribu PMI Exact B	Structure	Summary and per node display of results		
	B-rep	Type, Bodies, regions, shells, faces count	Ordered series of Parasolid validity checks on XT	
	Tessellation	Number of LODS Resultant LOD parameters, triangles, line segments		
	PMI	PMI types and quantities of each	Data structures correctly defined and associations resolvable	
	Metadata	Quantity of properties		
	Mass Properties	Parasolid Computed Properties		Compares computed with CAD reported against user tolerance

JT Inspector

Command line utility for <u>Automation</u>


JTInspector H1-Assembly.jt -output h1.xml -config /mydir/myconfig.cfg

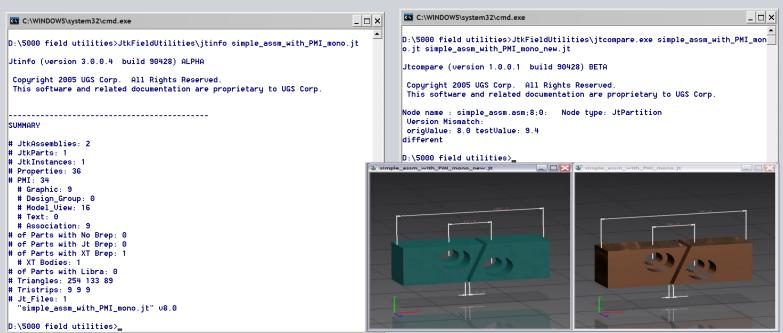
```
Configuration File "JT Inspector"
JTInspector {
    reportOn = "ENTIRE FILE";
    reportSummary = false;
}
JTContent {
    preciseGeometry = true;
    tessellation = true;
    pmi = true;
    properties = true;
}
Geometry {
    checkValidParasolid = true;
    checkFaceFace = false;
}
Fidelity {
    checkSurfaceArea = false;
}
```


Viewer Action for detailed inspection

- 1. Check tests to be performed
- 2. Execute
- 3. Examine Results

Resources:- Part Edit

Teamcenter Lifecycle Viewer


Tools->Part Edit

JT Field Utilities

Available to JT Open Members as examples built from JT Toolkit

- JTInfo Information at varying levels of granularity
- JTCompare Compare specified elements of two JT files
- XTfromJT Extracts the XT b-rep to a file.

May 2010 JT Open TRB – Vendor Presentations

Elysium

- healing
- PDQ check & comparison
- validation customer projects
- version shape comparison
- assembly comparison
- pmi semantic comparison
- pmi fidelity check points

Theorem

- management and audit
- previous implementation
- Ideas to JT
- cloud of points, mass props

T-Systems

- in-line PDQ, geometry and topology checks
- pmi report and compare

Core Technologie

- healing
- PDQ check & compare
- 2 way geometry comparison
- PMI comparison
- batch processing

III TranscenData

- face sampling points
- ambiguous geometry
- graphics comparison
- dimension comparison

JT Validation

Questions for the Panel?