针对新项目的创新及协作式同步项目管理
汽车及交通运输行业
Integration of mechanical, software and electronic systems technologies for vehicle systems
了解行业应用能源与公用事业
Supply chain collaboration in design, construction, maintenance and retirement of mission-critical assets
了解行业应用Heavy Equipment
Construction, mining, and agricultural heavy equipment manufacturers striving for superior performance
Explore Industry工业机械与重型装备行业
Integration of manufacturing process planning with design and engineering for today’s machine complexity
了解行业应用Insurance & Financial
Visibility, compliance and accountability for insurance and financial industries
Explore IndustryMedia & Telecommunications
Siemens PLM Software, a leader in media and telecommunications software, delivers digital solutions for cutting-edge technology supporting complex products in a rapidly changing market.
Explore IndustrySmall & Medium Business
Remove barriers and grow while maintaining your bottom line. We’re democratizing the most robust digital twins for your small and medium businesses.
Explore IndustryTransient CHT simulation of steam turbine startup
Transient CHT simulation of steam turbine startup
Use conjugate heat transfer CFD simulations to predict heat transfer coefficients during the start-up phase of steam turbines.
Turbine operation patterns are changing to fulfill new demand patterns from intermittent renewable energy supplies. This switch to flexible use increases the number of turbine start-ups and shutdowns. It’s critical to understand this effect on blade turbine stress, part lifetime, and maintenance costs. Watch this webinar to learn how B&B-AGEMA use conjugate heat transfer CFD simulations to predict heat transfer coefficients during the start-up phase of steam turbines. These are essential to accurately predict metal temperature distribution, required for thermal stress analyses and lifetime assessment. The transient simulation results are more accurate than standard analytical correlation data and can be used in component stress analyses.
To predict metal temperature distribution in turbine components, you need both surrounding fluid temperatures and component heat transfer coefficients. Modern steam turbine design usually relies on analytical correlations for heat transfer boundary conditions but there is a limit to their accuracy. In this study, B&B-AGEMA performed conjugate heat transfer (CHT) simulations using Simcenter STAR-CCM+. They were able to predict the component heat transfer coefficients during the turbine startup phase by running both steady-state and transient CHT simulations. The transient simulations showed that the local convective heat transfer coefficient generally increases with increasing axial and circumferential Reynolds’ number and is mostly influenced by vortex systems such as passage and horseshoe vortices.
Watch this webinar to see how standard analytical correlations underestimate the convective heat transfer over the startup procedure by about 40% compared to CHT simulation results. Incorporating transient CHT simulations into the design workflow increases the accuracy of heat transfer correlations and thermal stress analyses. This leads to minimized safety factors and thus reduced component and operation costs.
This presentation was part of Realize Live, an annual conference and tradeshow that brings together the global Siemens Digital Industries community of end-users, industry leaders, partners, and product experts in order to facilitate new opportunities to network, learn about, grow and optimize their technology and tools.
您好,鲍勃(将会在访问实际网站时替换为真实名字)
我们想要了解更多有关您的信息。
页面提交出错。请重新尝试。
首次订阅 Siemens Digital Industries Software 电子邮件?稍后您将收到一封电子邮件,请务必点击确认,以完成订阅。
您好,鲍勃(将会在访问实际网站时替换为真实名字)
本场网络研讨会将对您开放 90 天。请单击下方开始观看。
Use conjugate heat transfer CFD simulations to predict heat transfer coefficients during the start-up phase of steam turbines.
Turbine operation patterns are changing to fulfill new demand patterns from intermittent renewable energy supplies. This switch to flexible use increases the number of turbine start-ups and shutdowns. It’s critical to understand this effect on blade turbine stress, part lifetime, and maintenance costs. Watch this webinar to learn how B&B-AGEMA use conjugate heat transfer CFD simulations to predict heat transfer coefficients during the start-up phase of steam turbines. These are essential to accurately predict metal temperature distribution, required for thermal stress analyses and lifetime assessment. The transient simulation results are more accurate than standard analytical correlation data and can be used in component stress analyses.
To predict metal temperature distribution in turbine components, you need both surrounding fluid temperatures and component heat transfer coefficients. Modern steam turbine design usually relies on analytical correlations for heat transfer boundary conditions but there is a limit to their accuracy. In this study, B&B-AGEMA performed conjugate heat transfer (CHT) simulations using Simcenter STAR-CCM+. They were able to predict the component heat transfer coefficients during the turbine startup phase by running both steady-state and transient CHT simulations. The transient simulations showed that the local convective heat transfer coefficient generally increases with increasing axial and circumferential Reynolds’ number and is mostly influenced by vortex systems such as passage and horseshoe vortices.
Watch this webinar to see how standard analytical correlations underestimate the convective heat transfer over the startup procedure by about 40% compared to CHT simulation results. Incorporating transient CHT simulations into the design workflow increases the accuracy of heat transfer correlations and thermal stress analyses. This leads to minimized safety factors and thus reduced component and operation costs.
This presentation was part of Realize Live, an annual conference and tradeshow that brings together the global Siemens Digital Industries community of end-users, industry leaders, partners, and product experts in order to facilitate new opportunities to network, learn about, grow and optimize their technology and tools.