针对新项目的创新及协作式同步项目管理
汽车及交通运输行业
Integration of mechanical, software and electronic systems technologies for vehicle systems
了解行业应用能源与公用事业
Supply chain collaboration in design, construction, maintenance and retirement of mission-critical assets
了解行业应用Heavy Equipment
Construction, mining, and agricultural heavy equipment manufacturers striving for superior performance
Explore Industry工业机械与重型装备行业
Integration of manufacturing process planning with design and engineering for today’s machine complexity
了解行业应用Insurance & Financial
Visibility, compliance and accountability for insurance and financial industries
Explore IndustryMedia & Telecommunications
Siemens PLM Software, a leader in media and telecommunications software, delivers digital solutions for cutting-edge technology supporting complex products in a rapidly changing market.
Explore IndustrySmall & Medium Business
Remove barriers and grow while maintaining your bottom line. We’re democratizing the most robust digital twins for your small and medium businesses.
Explore IndustryHeart valve simulation
Heart valve simulation
Simulation holds the key to designing the next generation of implanted medical devices
Understanding Human-Medical Device interactions are foundational to the design of the next generation of medical devices. To fully understand these interactions, device designers are looking to computational modeling to provide more detail than current physical tests allow.
Arguably the most challenging Human-Medical Device interaction is that of realistic heart valve closure. In this webinar, experts from Thornton Tomasetti and Siemens will discuss best practices for performing highly-detailed heart valve simulations using Computational Fluid Dynamics (CFD), with a focus on the Fluid-Structure Interaction (FSI)—the interplay between the flow of blood through the valve, and the valve itself.
With roughly 250,000 prosthetic heart valves implanted each year, manufacturers need sophisticated computational models to design the next generation of valves, with the goal of developing valves that last a lifetime and mitigate the need for blood thinning.
Trileaflet valves operate on the principle of deformation: the three leaflets deflect according to the blood pressure, allowing for blood to flow in one direction but blocking flow in the other. The pressure on the leaflet surfaces leads to the deflection, while at the same time the deflection leads to a change of the flow path. Not only does the flow path change, the flow field changes with it, and so does the pressure on the leaflet surfaces—a classic example of 2-way coupled Fluid-Structure Interaction (FSI).
Coupled CFD/FSI simulations allow you to gain an in-depth understanding of the operational behavior of the valve design and analyze the impact of design changes in a highly efficient manner.
您好,鲍勃(将会在访问实际网站时替换为真实名字)
我们想要了解更多有关您的信息。
页面提交出错。请重新尝试。
首次订阅 Siemens Digital Industries Software 电子邮件?稍后您将收到一封电子邮件,请务必点击确认,以完成订阅。
您好,鲍勃(将会在访问实际网站时替换为真实名字)
本场网络研讨会将对您开放 90 天。请单击下方开始观看。
Simulation holds the key to designing the next generation of implanted medical devices
Understanding Human-Medical Device interactions are foundational to the design of the next generation of medical devices. To fully understand these interactions, device designers are looking to computational modeling to provide more detail than current physical tests allow.
Arguably the most challenging Human-Medical Device interaction is that of realistic heart valve closure. In this webinar, experts from Thornton Tomasetti and Siemens will discuss best practices for performing highly-detailed heart valve simulations using Computational Fluid Dynamics (CFD), with a focus on the Fluid-Structure Interaction (FSI)—the interplay between the flow of blood through the valve, and the valve itself.
With roughly 250,000 prosthetic heart valves implanted each year, manufacturers need sophisticated computational models to design the next generation of valves, with the goal of developing valves that last a lifetime and mitigate the need for blood thinning.
Trileaflet valves operate on the principle of deformation: the three leaflets deflect according to the blood pressure, allowing for blood to flow in one direction but blocking flow in the other. The pressure on the leaflet surfaces leads to the deflection, while at the same time the deflection leads to a change of the flow path. Not only does the flow path change, the flow field changes with it, and so does the pressure on the leaflet surfaces—a classic example of 2-way coupled Fluid-Structure Interaction (FSI).
Coupled CFD/FSI simulations allow you to gain an in-depth understanding of the operational behavior of the valve design and analyze the impact of design changes in a highly efficient manner.
User event | Registration now open!
Realize LIVE returns in person in 2022, uniting the Siemens global user community around a common mission: To co-create a better world.
Join 3,500+ of your peers to advance innovation, engineer the circular economy, and drive change that’s as sustainable as it is profitable.