Inovação e gerenciamento de programa sincronizado e colaborativo para novos programas
Aeroespacial e Defesa
Inovação e gerenciamento de programa sincronizado e colaborativo para novos programas
Explorar o SetorAutomotivo e Transporte
Integration of mechanical, software and electronic systems technologies for vehicle systems
Explorar o SetorProdutos de Consumo e Varejo
A inovação de produtos através do gerenciamento eficaz de formulações, embalagens e processos de manufatura integrados
Explore o SetorEletrônicos e Semicondutores
O desenvolvimento de novos produtos aproveita dados para melhorar a qualidade e a lucratividade e reduz custos e tempo de introdução no mercado
Explore o SetorEnergia e Utilidades
Supply chain collaboration in design, construction, maintenance and retirement of mission-critical assets
Explorar o SetorHeavy Equipment
Construction, mining, and agricultural heavy equipment manufacturers striving for superior performance
Explore IndustryMáquinas Industriais e Equipamento Pesado
Integration of manufacturing process planning with design and engineering for today’s machine complexity
Explorar o SetorInsurance & Financial
Visibility, compliance and accountability for insurance and financial industries
Explore IndustryMarinha
Inovação na construção naval para reduzir de maneira sustentável o custo do desenvolvimento de frotas futuras
Explore o SetorMedia & Telecommunications
Siemens PLM Software, a leader in media and telecommunications software, delivers digital solutions for cutting-edge technology supporting complex products in a rapidly changing market.
Explore IndustryDispositivos Médicos e Farmacêuticos
“Inovação de produtos personalizados" através da digitalização para atender a demandas do mercado e reduzir custos
Explore o SetorSmall & Medium Business
Remove barriers and grow while maintaining your bottom line. We’re democratizing the most robust digital twins for your small and medium businesses.
Explore IndustryQuality testing of semiconductor components and electrical subsystems
Quality testing of semiconductor components and electrical subsystems
Continuous improvements in quality and reduction in early life failures are key goals for semiconductor manufacturers, especially those supporting vehicle electrification applications.
Continuous improvements in quality and reduction in early life failures are key goals for semiconductor manufacturers, especially those supporting vehicle electrification applications. Historically, semiconductor companies would deploy early life failure reduction efforts with electrical test or geospatial techniques to reject or test out potential failures. Burn-in and predictive test techniques like part average testing have been around for a long time. Additionally, other geospatial methods such as visual defect screening and algorithmic yield clustering looking for abnormal patterns are used to predict early life failures.
Today the vehicle electrification market has even stricter requirements. In the quest for zero defects, companies must reduce manufacturing errors and variability. Inline thermal resistance measurements add another road to quality for semiconductor companies. Thermal transient testing can measure semiconductor junction temperature responses to short pulses and provide insights to potential manufacturing defects. The technology can reveal inconsistencies in the heat conduction path, quantify their effect on thermal resistance and highlight their location. Problems such as TIM1 or die attach voids or delamination can be found in the fraction of seconds, but problems outside of the package, such as TIM2 quality can be also measured with short pulses.
The speaker will explain how to apply thermal transient testing technology for quality testing and how to evaluate results.
Olá Bob (será substituído com o primeiro nome real durante a visita do site real)
Queremos saber mais sobre você.
Olá Bob (será substituído com o primeiro nome real durante a visita do site real)
Você tem acesso a este webinar por 90 dias. Clique abaixo para iniciar a visualização.
Continuous improvements in quality and reduction in early life failures are key goals for semiconductor manufacturers, especially those supporting vehicle electrification applications.
Continuous improvements in quality and reduction in early life failures are key goals for semiconductor manufacturers, especially those supporting vehicle electrification applications. Historically, semiconductor companies would deploy early life failure reduction efforts with electrical test or geospatial techniques to reject or test out potential failures. Burn-in and predictive test techniques like part average testing have been around for a long time. Additionally, other geospatial methods such as visual defect screening and algorithmic yield clustering looking for abnormal patterns are used to predict early life failures.
Today the vehicle electrification market has even stricter requirements. In the quest for zero defects, companies must reduce manufacturing errors and variability. Inline thermal resistance measurements add another road to quality for semiconductor companies. Thermal transient testing can measure semiconductor junction temperature responses to short pulses and provide insights to potential manufacturing defects. The technology can reveal inconsistencies in the heat conduction path, quantify their effect on thermal resistance and highlight their location. Problems such as TIM1 or die attach voids or delamination can be found in the fraction of seconds, but problems outside of the package, such as TIM2 quality can be also measured with short pulses.
The speaker will explain how to apply thermal transient testing technology for quality testing and how to evaluate results.