Inovação e gerenciamento de programa sincronizado e colaborativo para novos programas
Aeroespacial e Defesa
Inovação e gerenciamento de programa sincronizado e colaborativo para novos programas
Explorar o SetorAutomotivo e Transporte
Integration of mechanical, software and electronic systems technologies for vehicle systems
Explorar o SetorProdutos de Consumo e Varejo
A inovação de produtos através do gerenciamento eficaz de formulações, embalagens e processos de manufatura integrados
Explore o SetorEletrônicos e Semicondutores
O desenvolvimento de novos produtos aproveita dados para melhorar a qualidade e a lucratividade e reduz custos e tempo de introdução no mercado
Explore o SetorEnergia e Utilidades
Supply chain collaboration in design, construction, maintenance and retirement of mission-critical assets
Explorar o SetorHeavy Equipment
Construction, mining, and agricultural heavy equipment manufacturers striving for superior performance
Explore IndustryMáquinas Industriais e Equipamento Pesado
Integration of manufacturing process planning with design and engineering for today’s machine complexity
Explorar o SetorInsurance & Financial
Visibility, compliance and accountability for insurance and financial industries
Explore IndustryMarinha
Inovação na construção naval para reduzir de maneira sustentável o custo do desenvolvimento de frotas futuras
Explore o SetorMedia & Telecommunications
Siemens PLM Software, a leader in media and telecommunications software, delivers digital solutions for cutting-edge technology supporting complex products in a rapidly changing market.
Explore IndustryDispositivos Médicos e Farmacêuticos
“Inovação de produtos personalizados" através da digitalização para atender a demandas do mercado e reduzir custos
Explore o SetorSmall & Medium Business
Remove barriers and grow while maintaining your bottom line. We’re democratizing the most robust digital twins for your small and medium businesses.
Explore IndustryImpact of automotive power electronics topology on e-powertrain performance
Impact of automotive power electronics topology on e-powertrain performance
Accelerate inverter technology choice and thermal design innovation for improved efficiency and reliability
Power electronics modules for vehicle propulsion play an important role in the success of automotive electrification. OEMs are looking for new technologies and innovations to get the optimal power conversion efficiency set by the performance requirements. Decisions need to integrate the variety of circuit topologies and semiconductor technologies (SiC MOSFET, Sis, etc.) to provide the appropriate voltage levels, as well as the appropriate thermal management system (might it be cold plate, double-side or liquid pin cooling). The combination of those elements will impact the vehicle’s performance during integration with regards to reliability, energy consumption, power and thermal safety. Hence, it is critical to explore the design space early in the development cycle and avoid later performance failure.
This webinar introduces how a continuous digital thread will enable you to explore design possibilities, assess performance levels from component choices to integration, and make the right decisions weighting performances, energy consumption and thermal safety.
In this webinar, we explain how to:
Byron Blackmore
Product Manager, Siemens Digital Industries Software
Byron is a Product Manager for the Simcenter Flotherm product line at Siemens Digital Industries Software. Byron received a bachelor’s degree in Mechanical Engineering from the Technical University of Nova Scotia in 1998 and a Master’s degree from the University of Alberta in 2000.
Romain Nicolas
Business Developer, Siemens Digital Industries Software
Romain is responsible for system simulation activities in the heavy equipment sector. He started his career in 2011 as control systems engineer in the Volvo AB Group. There, he developed a platform for control algorithms verification, led several projects as system responsible, and worked as a software developer using Agile methodology. He has a Mechanical Engineering degree from ESTACA Paris and an MSc from IFP School.
Olá Bob (será substituído com o primeiro nome real durante a visita do site real)
Queremos saber mais sobre você.
Olá Bob (será substituído com o primeiro nome real durante a visita do site real)
Você tem acesso a este webinar por 90 dias. Clique abaixo para iniciar a visualização.
Accelerate inverter technology choice and thermal design innovation for improved efficiency and reliability
Power electronics modules for vehicle propulsion play an important role in the success of automotive electrification. OEMs are looking for new technologies and innovations to get the optimal power conversion efficiency set by the performance requirements. Decisions need to integrate the variety of circuit topologies and semiconductor technologies (SiC MOSFET, Sis, etc.) to provide the appropriate voltage levels, as well as the appropriate thermal management system (might it be cold plate, double-side or liquid pin cooling). The combination of those elements will impact the vehicle’s performance during integration with regards to reliability, energy consumption, power and thermal safety. Hence, it is critical to explore the design space early in the development cycle and avoid later performance failure.
This webinar introduces how a continuous digital thread will enable you to explore design possibilities, assess performance levels from component choices to integration, and make the right decisions weighting performances, energy consumption and thermal safety.
In this webinar, we explain how to:
Byron Blackmore
Product Manager, Siemens Digital Industries Software
Byron is a Product Manager for the Simcenter Flotherm product line at Siemens Digital Industries Software. Byron received a bachelor’s degree in Mechanical Engineering from the Technical University of Nova Scotia in 1998 and a Master’s degree from the University of Alberta in 2000.
Romain Nicolas
Business Developer, Siemens Digital Industries Software
Romain is responsible for system simulation activities in the heavy equipment sector. He started his career in 2011 as control systems engineer in the Volvo AB Group. There, he developed a platform for control algorithms verification, led several projects as system responsible, and worked as a software developer using Agile methodology. He has a Mechanical Engineering degree from ESTACA Paris and an MSc from IFP School.