Innovation and collaborative, synchronized program management for new programs
Aerospace & Defense
Innovation and collaborative, synchronized program management for new programs
Explore IndustryAutomotive & Transportation
Integration of mechanical, software and electronic systems technologies for vehicle systems
Explore IndustryProdukty konsumenckie i handel detaliczny
Innowacyjność produktów poprzez efektywne zarządzanie zintegrowanymi recepturami, opakowaniami i procesami produkcyjnymi
Dowiedz się więcej o branżyElectronics & Semiconductors
New product development leverages data to improve quality and profitability and reduce time-to-market and costs
Explore IndustryEnergy & Utilities
Supply chain collaboration in design, construction, maintenance and retirement of mission-critical assets
Explore IndustryHeavy Equipment
Construction, mining, and agricultural heavy equipment manufacturers striving for superior performance
Explore IndustryIndustrial Machinery
Integration of manufacturing process planning with design and engineering for today’s machine complexity
Explore IndustryInsurance & Financial
Visibility, compliance and accountability for insurance and financial industries
Explore IndustryMarine
Shipbuilding innovation to sustainably reduce the cost of developing future fleets
Explore IndustryMedia & Telecommunications
Siemens PLM Software, a leader in media and telecommunications software, delivers digital solutions for cutting-edge technology supporting complex products in a rapidly changing market.
Explore IndustryMedical Devices & Pharmaceuticals
“Personalized product innovation” through digitalization to meet market demands and reduce costs
Explore IndustrySmall & Medium Business
Remove barriers and grow while maintaining your bottom line. We’re democratizing the most robust digital twins for your small and medium businesses.
Explore IndustryHot to cold blade shape conversion
Hot to cold blade shape conversion
In this webinar, hear how Siemens Energy uses Simcenter to perform hot to cold conversion in a single analysis step. Learn more on their validation methods and confidence in the results.
Efficient blade shapes are key to designing efficient turbines. Compressor blade geometry is first defined for the operating, hot shape. This must be reverse engineered to the cold blade shape before manufacturing, which often requires an iterative finite element approach. In this webinar, hear how Siemens Energy use Simcenter to perform hot to cold conversion in a single analysis step. This approach is up to five times quicker than a standard iterative method, with the same level of accuracy.
You will learn:
One of the key design criteria for engine blades is that they are able to perform a certain number of design cycles without failing due to stress fatigue. In this webinar hear how Siemens Energy use Simcenter solutions to identify the high stress regions and engine loads. They also share results from validation studies for their mechanical stress model.
Simon Jackson
Principal Analytical Engineer , Siemens Energy Industrial Turbomachinery Ltd, UK
Simon Jackson is a Principal Analytical Engineer for mechanical integrity at Siemens Energy Industrial Turbomachinery Ltd, UK. He received his Bachelor of Engineering degree in Mechanical Engineering in 1990 from Staffordshire University and since then has been working at the gas turbine facility in Lincoln, firstly on package design and the past 20 years on stress, life and vibration analysis of compressor/turbine blades and discs. He is an Associate member of the IMechE.
Witaj Bob (zostanie zastąpione prawdziwym imieniem przy wejściu na stronę)
Chcemy dowiedzieć się więcej na Twój temat.
Podczas przesyłania danych wystąpił błąd. Spróbuj ponownie.
Subskrybujesz wiadomości e-mail od firmy Siemens Digital Industries Software po raz pierwszy? Pamiętaj o potwierdzeniu subskrypcji w wiadomości e-mail, którą niebawem otrzymasz.
Witaj Bob (zostanie zastąpione prawdziwym imieniem przy wejściu na stronę)
Masz dostęp do tego webinaru przez 90 dni. Kliknij poniżej, aby rozpocząć oglądanie.
In this webinar, hear how Siemens Energy uses Simcenter to perform hot to cold conversion in a single analysis step. Learn more on their validation methods and confidence in the results.
Efficient blade shapes are key to designing efficient turbines. Compressor blade geometry is first defined for the operating, hot shape. This must be reverse engineered to the cold blade shape before manufacturing, which often requires an iterative finite element approach. In this webinar, hear how Siemens Energy use Simcenter to perform hot to cold conversion in a single analysis step. This approach is up to five times quicker than a standard iterative method, with the same level of accuracy.
You will learn:
One of the key design criteria for engine blades is that they are able to perform a certain number of design cycles without failing due to stress fatigue. In this webinar hear how Siemens Energy use Simcenter solutions to identify the high stress regions and engine loads. They also share results from validation studies for their mechanical stress model.
Simon Jackson
Principal Analytical Engineer , Siemens Energy Industrial Turbomachinery Ltd, UK
Simon Jackson is a Principal Analytical Engineer for mechanical integrity at Siemens Energy Industrial Turbomachinery Ltd, UK. He received his Bachelor of Engineering degree in Mechanical Engineering in 1990 from Staffordshire University and since then has been working at the gas turbine facility in Lincoln, firstly on package design and the past 20 years on stress, life and vibration analysis of compressor/turbine blades and discs. He is an Associate member of the IMechE.