革新的でコラボラティブ、かつ連携した新規プログラムの管理
Heavy Equipment
Construction, mining, and agricultural heavy equipment manufacturers striving for superior performance
Explore Industry中堅・中小企業
Remove barriers and grow while maintaining your bottom line. We’re democratizing the most robust digital twins for your small and medium businesses.
Explore IndustrySimulation as a key enabler for fuel cell systems optimization
Simulation as a key enabler for fuel cell systems optimization
From early system design to integration and validation
In the trend of zero-emission vehicles, a fuel cell is gaining preference as an alternative to battery, especially for commercial vehicles, buses, or passenger cars requiring a long range without repeatedly recharging. However, integrating the stack and the Balance of Plant (BoP) into a vehicle is not straightforward: it involves many interacting physics and subsystems that need to be perfectly combined with optimal control strategies to reach the required levels of performance, the lowest energy consumption while ensuring strong reliability and long lifetime.
In this 30-minute webinar, our Siemens experts and Jules Sery from IFP Energies nouvelles introduce how a multi-physics system simulation-based approach helps to predict and better understand the behavior of the fuel cell integrated with its air and hydrogen supply systems, as well as the water and thermal management systems. We’ll also demonstrate our simulation capabilities showing a comparison of results for hydrogen consumption and fuel cell system behavior with dynamometer test bench data on a Hyundai Nexo. We’ll explain how off-the-shelves models and application-oriented tools make it possible to simulate the fuel cell stack and the BoP from the concept phase, for subsystems and control design, and finally for components integration and control calibration.
During this session, we’ll introduce how this model-based design approach helps to make better design decisions in shorter timeframes:
Jules Sery
Research and Innovation engineer, Mobility and Systems Research Division, IFP Energies nouvelles
Jules is a system simulation engineer working at IFP Energies nouvelles, a research center focusing on the fields of energy, transport and environment. For the last 3 years he has been working on various automotive engineering topics ranging from energy management strategy simulation for hybrid vehicles to 0/1D simulation of xHEVs and FCEVs.
Patrice Montaland
Business Development Manager, Siemens Digital Industries Software
Patrice is the Business Development Manager for System simulation activities, focusing on green energies, hydrogen and fuel cells. He has a master's degree in mechanical engineering and has been involved in multi-domain system simulation since 1998.
Benoit Honel
Product Manager Electrification, Siemens Digital Industries Software
In his role, Benoit focuses on aligning the Simcenter Amesim product features with the customers accelerating vehicle electrification challenges. He has a master's degree in thermodynamic engineering and has been involved in multi-domain system simulation since 1995.
ユーザー (実際にウェブサイトを開くとユーザーのお名前に置き換わる) 様
お客様の以下の情報についてお知らせください。
ページの送信でエラーが発生しました。もう一度やり直してください。
シーメンスデジタルインダストリーズソフトウェアのメールに初めて登録された方は、登録直後に送られる自動メールの中にある「電子メール・アドレスの確認」ボタンをクリックしてください。
ユーザー (実際にウェブサイトを開くとユーザーのお名前に置き換わる) 様
このウェビナーには、90日間アクセスできます。視聴するには、以下をクリックしてください。
From early system design to integration and validation
In the trend of zero-emission vehicles, a fuel cell is gaining preference as an alternative to battery, especially for commercial vehicles, buses, or passenger cars requiring a long range without repeatedly recharging. However, integrating the stack and the Balance of Plant (BoP) into a vehicle is not straightforward: it involves many interacting physics and subsystems that need to be perfectly combined with optimal control strategies to reach the required levels of performance, the lowest energy consumption while ensuring strong reliability and long lifetime.
In this 30-minute webinar, our Siemens experts and Jules Sery from IFP Energies nouvelles introduce how a multi-physics system simulation-based approach helps to predict and better understand the behavior of the fuel cell integrated with its air and hydrogen supply systems, as well as the water and thermal management systems. We’ll also demonstrate our simulation capabilities showing a comparison of results for hydrogen consumption and fuel cell system behavior with dynamometer test bench data on a Hyundai Nexo. We’ll explain how off-the-shelves models and application-oriented tools make it possible to simulate the fuel cell stack and the BoP from the concept phase, for subsystems and control design, and finally for components integration and control calibration.
During this session, we’ll introduce how this model-based design approach helps to make better design decisions in shorter timeframes:
Jules Sery
Research and Innovation engineer, Mobility and Systems Research Division, IFP Energies nouvelles
Jules is a system simulation engineer working at IFP Energies nouvelles, a research center focusing on the fields of energy, transport and environment. For the last 3 years he has been working on various automotive engineering topics ranging from energy management strategy simulation for hybrid vehicles to 0/1D simulation of xHEVs and FCEVs.
Patrice Montaland
Business Development Manager, Siemens Digital Industries Software
Patrice is the Business Development Manager for System simulation activities, focusing on green energies, hydrogen and fuel cells. He has a master's degree in mechanical engineering and has been involved in multi-domain system simulation since 1998.
Benoit Honel
Product Manager Electrification, Siemens Digital Industries Software
In his role, Benoit focuses on aligning the Simcenter Amesim product features with the customers accelerating vehicle electrification challenges. He has a master's degree in thermodynamic engineering and has been involved in multi-domain system simulation since 1995.