革新的でコラボラティブ、かつ連携した新規プログラムの管理
Simcenter MAGNET 2D/3Dは、モーター、ジェネレーター、センサー、変圧器、アクチュエーター、ソレノイドのほか、永久磁石やコイルを持つすべてのコンポーネントの性能を予測できる強力なシミュレーション・ソフトウェアです。効率的なこの高精度ソフトウェアを使って、簡単なものから複雑なものまで、あらゆる電磁気装置、電気機械装置を最適化、設計、解析できます。
Simcenter MAGNETの仮想プロトタイピングは、高いコスト効率性と時間効率性を備えています。パラメーター調査と最適化検証によって、複数の構成を比較検討しながら性能を向上させます。実際の稼動環境や過酷な条件を正確に再現することで、損失や温度のホットスポット、磁石の永久減磁、未使用材などの詳細を確認し、故障条件下の解析が可能です。
Simcenter MAGNET 2D/3Dは、モーター、ジェネレーター、センサー、変圧器、アクチュエーター、ソレノイドのほか、永久磁石やコイルを持つすべてのコンポーネントの性能を予測できる強力なシミュレーション・ソフトウェアです。効率的なこの高精度ソフトウェアを使って、簡単なものから複雑なものまで、あらゆる電磁気装置、電気機械装置を最適化、設計、解析できます。
Simcenter MAGNETの仮想プロトタイピングは、高いコスト効率性と時間効率性を備えています。パラメーター調査と最適化検証によって、複数の構成を比較検討しながら性能を向上させます。実際の稼動環境や過酷な条件を正確に再現することで、損失や温度のホットスポット、磁石の永久減磁、未使用材などの詳細を確認し、故障条件下の解析が可能です。
AC electromagnetic simulations are based on a single frequency, which reduces the simulation time. With this approach, you can simulate electromagnetic fields in and around current-carrying conductors, in the presence of isotropic materials that may be conducting, magnetic, or both. This accounts for displacement currents, eddy-current and proximity effects, which are important in hotspots analysis.
The accuracy of low-frequency electromagnetic simulations is highly dependent on material data. Simcenter electromagnetic advanced material modeling accounts for nonlinearities, temperature dependencies, demagnetization of permanent magnets, hysteresis loss and anisotropic effects. This makes it possible to analyze effects such as demagnetization in permanent magnets to verify their service life, analyze frequency dependent losses in thin parts while reducing solution time and account for all losses for an accurate energy balance.
The finite element method for electric fields can be used to simulate static electric fields, AC electric fields and transient electric fields. It can also simulate current flow which is the static current densities produced by DC voltages on electrodes in contact with conducting materials.
Electric field simulations are typically used for high-voltage applications to predict insulation and winding failures, lightning impulse simulations, partial discharge analysis and impedance analysis.
The electromagnetic simulation of transient fields can include motion. It is possible to simulate rotational, linear and arbitrary motion with six degrees of freedom (X, Y, Z, Roll, Pitch, and Yaw). This is available for an unlimited number of moving components, induced currents and mechanical interactions.
The mechanical effects include viscous friction, inertia, mass, springs, and gravitation, as well as constraints on movement imposed by mechanical stops. Arbitrary load forces can be specified as a function of position, speed, and time. Induced currents due to motion are taken into account.
Permits the simulation of complex problems that involve time-varying arbitrary-shaped current or voltage sources and outputs with nonlinearity in materials and frequency-dependent effects. This includes oscillations in electromechanical devices, demagnetization in permanent magnets, switching effects, eddy-currents induced torque, skin and proximity effects.