Innovazione e gestione dei programmi sincronizzata e collaborativa per i nuovi programmi
Aerospaziale e difesa
Innovazione e gestione dei programmi sincronizzata e collaborativa per i nuovi programmi
EsploraIndustria automobilistica e trasporti
Integration of mechanical, software and electronic systems technologies for vehicle systems
Esplora il settoreProdotti di consumo e vendita al dettaglio
Innovazione dei prodotti attraverso la gestione efficace di processi integrati di formulazione, confezionamento e produzione
Esplora il settoreElettronica e semiconduttori
Lo sviluppo di nuovi prodotti si avvale dei dati per migliorare la qualità e la redditività riducendo costi e time-to-market
Esplora il settoreEnergia e utilità
Supply chain collaboration in design, construction, maintenance and retirement of mission-critical assets
Esplora il settoreHeavy Equipment
Construction, mining, and agricultural heavy equipment manufacturers striving for superior performance
Explore IndustrySoluzioni per macchinari industriali e attrezzature pesanti
Integration of manufacturing process planning with design and engineering for today’s machine complexity
Esplora il settoreInsurance & Financial
Visibility, compliance and accountability for insurance and financial industries
Explore IndustrySettore navale
Innovazione nella cantieristica navale per ridurre i costi di sviluppo delle future flotte in modo sostenibile
Esplora il settoreMedia & Telecommunications
Siemens PLM Software, a leader in media and telecommunications software, delivers digital solutions for cutting-edge technology supporting complex products in a rapidly changing market.
Explore IndustryApparecchiature medicali e farmaceutica
"Innovazione di prodotto personalizzata" attraverso la digitalizzazione per soddisfare la domanda del mercato e ridurre i costi
Esplora il settoreSmall & Medium Business
Remove barriers and grow while maintaining your bottom line. We’re democratizing the most robust digital twins for your small and medium businesses.
Explore IndustryAssessing variability influence on electronics thermal reliability using thermal analysis
Assessing variability influence on electronics thermal reliability using thermal analysis
Combining design space exploration and electronics thermal analysis
The traditional use of electronics thermal analysis in its basic function has always been to assess whether a design will adequately ensure maximum temperatures are not exceeded. Improving a design to meet a performance goal using parametric studies and optimization techniques is widely recognized. Even assessing mission profiles using transient simulation is now more prevalent for power management studies or to generate temperature cycling insights.
How many thermal simulation-based design processes today are typically assessing the wide influence of variability from either manufacturing defects or to help quantify impacts of simulation input variations? This on-demand webinar explores the use of electronics thermal analysis combined with statistical design space exploration tools.
Typical electronics cooling simulation studies include multiple design inputs that may be subject to variability e.g data sheet interpretation, material property variation, incorporation of engineering judgment.
Understanding how the thermal performance changes as uncertainties are quantified through statistics will result in more reliable electronics systems
By combining electronics cooling thermal simulation with statistical approaches, engineers can more fully explore the design space. They can also apply analysis to evaluating potential impacts of certain manufacturing quality variation or defects. This on-demand presentation introduces an approach to simulation-based assessment of variations in manufacturing that can influence field reliability of an electronics product.
Studies performed shown in this presentation include Design of Experiments and Monte Carlo methods
A 3D thermal simulation model can provide more insight if it is exercised beyond the nominal input values. Surrogate modeling provides a method to guide an electronics thermal design within the time constraints of a typical design process.
An example is included in this recorded technical presentation looking at the impact of different sizes of TIM material defect, position and variations in thermal conductivity that then influence the operating junction temperature of a package.
Similar approaches to this example can be used to explore variation in thermal bondline performance by evaluating surface flatness, voiding, material performance and TIM degradation over lifetime due to cycling.
Gentile Bob (verrà sostituito con il vero nome durante la visita effettiva del sito Web)
Vorremmo sapere di più su di te.
si è verificato un errore con l'inoltro della pagina. Riprovare.
È la prima volta che ti iscrivi per ricevere e-mail di Siemens Digital Industries Software? Assicurati di dare il consenso all’iscrizione con l’e-mail che riceverai a breve.
Gentile Bob (verrà sostituito con il vero nome durante la visita effettiva del sito Web)
Hai accesso al webinar per una durata di 90 giorni. Clicca qui di seguito per iniziare la visualizzazione.
Combining design space exploration and electronics thermal analysis
The traditional use of electronics thermal analysis in its basic function has always been to assess whether a design will adequately ensure maximum temperatures are not exceeded. Improving a design to meet a performance goal using parametric studies and optimization techniques is widely recognized. Even assessing mission profiles using transient simulation is now more prevalent for power management studies or to generate temperature cycling insights.
How many thermal simulation-based design processes today are typically assessing the wide influence of variability from either manufacturing defects or to help quantify impacts of simulation input variations? This on-demand webinar explores the use of electronics thermal analysis combined with statistical design space exploration tools.
Typical electronics cooling simulation studies include multiple design inputs that may be subject to variability e.g data sheet interpretation, material property variation, incorporation of engineering judgment.
Understanding how the thermal performance changes as uncertainties are quantified through statistics will result in more reliable electronics systems
By combining electronics cooling thermal simulation with statistical approaches, engineers can more fully explore the design space. They can also apply analysis to evaluating potential impacts of certain manufacturing quality variation or defects. This on-demand presentation introduces an approach to simulation-based assessment of variations in manufacturing that can influence field reliability of an electronics product.
Studies performed shown in this presentation include Design of Experiments and Monte Carlo methods
A 3D thermal simulation model can provide more insight if it is exercised beyond the nominal input values. Surrogate modeling provides a method to guide an electronics thermal design within the time constraints of a typical design process.
An example is included in this recorded technical presentation looking at the impact of different sizes of TIM material defect, position and variations in thermal conductivity that then influence the operating junction temperature of a package.
Similar approaches to this example can be used to explore variation in thermal bondline performance by evaluating surface flatness, voiding, material performance and TIM degradation over lifetime due to cycling.