Innovation et gestion de programmes synchronisée et collaborative pour les nouveaux programmes
Aérospatiale & Défense
Innovation et gestion de programmes synchronisée et collaborative pour les nouveaux programmes
Explorer l’industrieAutomobile et Transports
Integration of mechanical, software and electronic systems technologies for vehicle systems
Explorer l’industrieBiens de consommation & Distribution
Innovation produit grâce à la gestion efficace et intégrée des formulations, du packaging et des procédés de fabrication
Explorer l’industrieÉlectronique & semi-conducteurs
Le développement de nouveaux produits exploite les données pour améliorer la qualité et la rentabilité tout en réduisant les délais de mise sur le marché et les coûts.
Explorer l’industrieÉnergie et services publics
Supply chain collaboration in design, construction, maintenance and retirement of mission-critical assets
Explorer l’industrieHeavy Equipment
Construction, mining, and agricultural heavy equipment manufacturers striving for superior performance
Explore IndustryConstructions mécaniques et équipements lourds
Integration of manufacturing process planning with design and engineering for today’s machine complexity
Explorer cette industrieInsurance & Financial
Visibility, compliance and accountability for insurance and financial industries
Explore IndustrySecteur maritime
Innovation dans la construction navale pour réduire de façon durable le coût de développement des futures flottes
Explorer l’industrieMedia & Telecommunications
Siemens PLM Software, a leader in media and telecommunications software, delivers digital solutions for cutting-edge technology supporting complex products in a rapidly changing market.
Explore IndustryAppareils Médicaux et Produits Pharmaceutiques
« Innovation produit personnalisée » grâce à la digitalisation, pour répondre à la demande du marché et réduire les coûts
Explorer l’industrieSmall & Medium Business
Remove barriers and grow while maintaining your bottom line. We’re democratizing the most robust digital twins for your small and medium businesses.
Explore IndustryTransient CHT simulation of steam turbine startup
Transient CHT simulation of steam turbine startup
Use conjugate heat transfer CFD simulations to predict heat transfer coefficients during the start-up phase of steam turbines.
Turbine operation patterns are changing to fulfill new demand patterns from intermittent renewable energy supplies. This switch to flexible use increases the number of turbine start-ups and shutdowns. It’s critical to understand this effect on blade turbine stress, part lifetime, and maintenance costs. Watch this webinar to learn how B&B-AGEMA use conjugate heat transfer CFD simulations to predict heat transfer coefficients during the start-up phase of steam turbines. These are essential to accurately predict metal temperature distribution, required for thermal stress analyses and lifetime assessment. The transient simulation results are more accurate than standard analytical correlation data and can be used in component stress analyses.
To predict metal temperature distribution in turbine components, you need both surrounding fluid temperatures and component heat transfer coefficients. Modern steam turbine design usually relies on analytical correlations for heat transfer boundary conditions but there is a limit to their accuracy. In this study, B&B-AGEMA performed conjugate heat transfer (CHT) simulations using Simcenter STAR-CCM+. They were able to predict the component heat transfer coefficients during the turbine startup phase by running both steady-state and transient CHT simulations. The transient simulations showed that the local convective heat transfer coefficient generally increases with increasing axial and circumferential Reynolds’ number and is mostly influenced by vortex systems such as passage and horseshoe vortices.
Watch this webinar to see how standard analytical correlations underestimate the convective heat transfer over the startup procedure by about 40% compared to CHT simulation results. Incorporating transient CHT simulations into the design workflow increases the accuracy of heat transfer correlations and thermal stress analyses. This leads to minimized safety factors and thus reduced component and operation costs.
This presentation was part of Realize Live, an annual conference and tradeshow that brings together the global Siemens Digital Industries community of end-users, industry leaders, partners, and product experts in order to facilitate new opportunities to network, learn about, grow and optimize their technology and tools.
Bonjour Bob (sera remplacé par le nom réel pendant la visite du site Web)
Nous voulons en savoir plus sur vous.
Un problème est survenu lors de l'envoi du formulaire. Veuillez réessayer.
C'est votre première souscription aux e-mails en provenance de Siemens Digital Industries Software ? Vous allez bientôt recevoir un e-mail qui vous permettra de confirmer votre inscription.
Bonjour Bob (sera remplacé par le nom réel pendant la visite du site Web)
Vous avez accès à ce séminaire pendant 90 jours. Cliquez ci-dessous pour commencer à regarder.
Use conjugate heat transfer CFD simulations to predict heat transfer coefficients during the start-up phase of steam turbines.
Turbine operation patterns are changing to fulfill new demand patterns from intermittent renewable energy supplies. This switch to flexible use increases the number of turbine start-ups and shutdowns. It’s critical to understand this effect on blade turbine stress, part lifetime, and maintenance costs. Watch this webinar to learn how B&B-AGEMA use conjugate heat transfer CFD simulations to predict heat transfer coefficients during the start-up phase of steam turbines. These are essential to accurately predict metal temperature distribution, required for thermal stress analyses and lifetime assessment. The transient simulation results are more accurate than standard analytical correlation data and can be used in component stress analyses.
To predict metal temperature distribution in turbine components, you need both surrounding fluid temperatures and component heat transfer coefficients. Modern steam turbine design usually relies on analytical correlations for heat transfer boundary conditions but there is a limit to their accuracy. In this study, B&B-AGEMA performed conjugate heat transfer (CHT) simulations using Simcenter STAR-CCM+. They were able to predict the component heat transfer coefficients during the turbine startup phase by running both steady-state and transient CHT simulations. The transient simulations showed that the local convective heat transfer coefficient generally increases with increasing axial and circumferential Reynolds’ number and is mostly influenced by vortex systems such as passage and horseshoe vortices.
Watch this webinar to see how standard analytical correlations underestimate the convective heat transfer over the startup procedure by about 40% compared to CHT simulation results. Incorporating transient CHT simulations into the design workflow increases the accuracy of heat transfer correlations and thermal stress analyses. This leads to minimized safety factors and thus reduced component and operation costs.
This presentation was part of Realize Live, an annual conference and tradeshow that brings together the global Siemens Digital Industries community of end-users, industry leaders, partners, and product experts in order to facilitate new opportunities to network, learn about, grow and optimize their technology and tools.
Contactez-nous
Support technique produit
Préférences de communication
Bureaux dans le monde