Innovation et gestion de programmes synchronisée et collaborative pour les nouveaux programmes
Aérospatiale & Défense
Innovation et gestion de programmes synchronisée et collaborative pour les nouveaux programmes
Explorer l’industrieAutomobile et Transports
Integration of mechanical, software and electronic systems technologies for vehicle systems
Explorer l’industrieBiens de consommation & Distribution
Innovation produit grâce à la gestion efficace et intégrée des formulations, du packaging et des procédés de fabrication
Explorer l’industrieÉlectronique & semi-conducteurs
Le développement de nouveaux produits exploite les données pour améliorer la qualité et la rentabilité tout en réduisant les délais de mise sur le marché et les coûts.
Explorer l’industrieÉnergie et services publics
Supply chain collaboration in design, construction, maintenance and retirement of mission-critical assets
Explorer l’industrieHeavy Equipment
Construction, mining, and agricultural heavy equipment manufacturers striving for superior performance
Explore IndustryConstructions mécaniques et équipements lourds
Integration of manufacturing process planning with design and engineering for today’s machine complexity
Explorer cette industrieInsurance & Financial
Visibility, compliance and accountability for insurance and financial industries
Explore IndustrySecteur maritime
Innovation dans la construction navale pour réduire de façon durable le coût de développement des futures flottes
Explorer l’industrieMedia & Telecommunications
Siemens PLM Software, a leader in media and telecommunications software, delivers digital solutions for cutting-edge technology supporting complex products in a rapidly changing market.
Explore IndustryAppareils Médicaux et Produits Pharmaceutiques
« Innovation produit personnalisée » grâce à la digitalisation, pour répondre à la demande du marché et réduire les coûts
Explorer l’industrieSmall & Medium Business
Remove barriers and grow while maintaining your bottom line. We’re democratizing the most robust digital twins for your small and medium businesses.
Explore IndustrySimulation as a key enabler for fuel cell systems optimization
Simulation as a key enabler for fuel cell systems optimization
From early system design to integration and validation
In the trend of zero-emission vehicles, a fuel cell is gaining preference as an alternative to battery, especially for commercial vehicles, buses, or passenger cars requiring a long range without repeatedly recharging. However, integrating the stack and the Balance of Plant (BoP) into a vehicle is not straightforward: it involves many interacting physics and subsystems that need to be perfectly combined with optimal control strategies to reach the required levels of performance, the lowest energy consumption while ensuring strong reliability and long lifetime.
In this 30-minute webinar, our Siemens experts and Jules Sery from IFP Energies nouvelles introduce how a multi-physics system simulation-based approach helps to predict and better understand the behavior of the fuel cell integrated with its air and hydrogen supply systems, as well as the water and thermal management systems. We’ll also demonstrate our simulation capabilities showing a comparison of results for hydrogen consumption and fuel cell system behavior with dynamometer test bench data on a Hyundai Nexo. We’ll explain how off-the-shelves models and application-oriented tools make it possible to simulate the fuel cell stack and the BoP from the concept phase, for subsystems and control design, and finally for components integration and control calibration.
During this session, we’ll introduce how this model-based design approach helps to make better design decisions in shorter timeframes:
Jules Sery
Research and Innovation engineer, Mobility and Systems Research Division, IFP Energies nouvelles
Jules is a system simulation engineer working at IFP Energies nouvelles, a research center focusing on the fields of energy, transport and environment. For the last 3 years he has been working on various automotive engineering topics ranging from energy management strategy simulation for hybrid vehicles to 0/1D simulation of xHEVs and FCEVs.
Patrice Montaland
Business Development Manager, Siemens Digital Industries Software
Patrice is the Business Development Manager for System simulation activities, focusing on green energies, hydrogen and fuel cells. He has a master's degree in mechanical engineering and has been involved in multi-domain system simulation since 1998.
Benoit Honel
Product Manager Electrification, Siemens Digital Industries Software
In his role, Benoit focuses on aligning the Simcenter Amesim product features with the customers accelerating vehicle electrification challenges. He has a master's degree in thermodynamic engineering and has been involved in multi-domain system simulation since 1995.
Bonjour Bob (sera remplacé par le nom réel pendant la visite du site Web)
Nous voulons en savoir plus sur vous.
Un problème est survenu lors de l'envoi du formulaire. Veuillez réessayer.
C'est votre première souscription aux e-mails en provenance de Siemens Digital Industries Software ? Vous allez bientôt recevoir un e-mail qui vous permettra de confirmer votre inscription.
Bonjour Bob (sera remplacé par le nom réel pendant la visite du site Web)
Vous avez accès à ce séminaire pendant 90 jours. Cliquez ci-dessous pour commencer à regarder.
From early system design to integration and validation
In the trend of zero-emission vehicles, a fuel cell is gaining preference as an alternative to battery, especially for commercial vehicles, buses, or passenger cars requiring a long range without repeatedly recharging. However, integrating the stack and the Balance of Plant (BoP) into a vehicle is not straightforward: it involves many interacting physics and subsystems that need to be perfectly combined with optimal control strategies to reach the required levels of performance, the lowest energy consumption while ensuring strong reliability and long lifetime.
In this 30-minute webinar, our Siemens experts and Jules Sery from IFP Energies nouvelles introduce how a multi-physics system simulation-based approach helps to predict and better understand the behavior of the fuel cell integrated with its air and hydrogen supply systems, as well as the water and thermal management systems. We’ll also demonstrate our simulation capabilities showing a comparison of results for hydrogen consumption and fuel cell system behavior with dynamometer test bench data on a Hyundai Nexo. We’ll explain how off-the-shelves models and application-oriented tools make it possible to simulate the fuel cell stack and the BoP from the concept phase, for subsystems and control design, and finally for components integration and control calibration.
During this session, we’ll introduce how this model-based design approach helps to make better design decisions in shorter timeframes:
Jules Sery
Research and Innovation engineer, Mobility and Systems Research Division, IFP Energies nouvelles
Jules is a system simulation engineer working at IFP Energies nouvelles, a research center focusing on the fields of energy, transport and environment. For the last 3 years he has been working on various automotive engineering topics ranging from energy management strategy simulation for hybrid vehicles to 0/1D simulation of xHEVs and FCEVs.
Patrice Montaland
Business Development Manager, Siemens Digital Industries Software
Patrice is the Business Development Manager for System simulation activities, focusing on green energies, hydrogen and fuel cells. He has a master's degree in mechanical engineering and has been involved in multi-domain system simulation since 1998.
Benoit Honel
Product Manager Electrification, Siemens Digital Industries Software
In his role, Benoit focuses on aligning the Simcenter Amesim product features with the customers accelerating vehicle electrification challenges. He has a master's degree in thermodynamic engineering and has been involved in multi-domain system simulation since 1995.
User event | Registration now open!
Realize LIVE returns in person in 2022, uniting the Siemens global user community around a common mission: To co-create a better world.
Join 3,500+ of your peers to advance innovation, engineer the circular economy, and drive change that’s as sustainable as it is profitable.
Contactez-nous
Support technique produit
Préférences de communication
Bureaux dans le monde