Innovation et gestion de programmes synchronisée et collaborative pour les nouveaux programmes
Pour bien comprendre le comportement vibratoire d’un système, les ingénieurs effectuent une analyse des chemins de transfert qui les aide à identifier et évaluer les chemins de transfert de l’énergie au sein des structures et dans l’air, de la source d’excitation jusqu’à un emplacement de réception donné.
L’analyse des chemins de transfert quantifie les différentes sources et leurs chemins et détermine lesquels contribuent le plus aux problèmes de bruit et lesquels s’annulent. À partir des sources et des chemins quantifiés et modélisés, il est relativement simple d’optimiser les performances NVH du système.
Pour bien comprendre le comportement vibratoire d’un système, les ingénieurs effectuent une analyse des chemins de transfert qui les aide à identifier et évaluer les chemins de transfert de l’énergie au sein des structures et dans l’air, de la source d’excitation jusqu’à un emplacement de réception donné.
L’analyse des chemins de transfert quantifie les différentes sources et leurs chemins et détermine lesquels contribuent le plus aux problèmes de bruit et lesquels s’annulent. À partir des sources et des chemins quantifiés et modélisés, il est relativement simple d’optimiser les performances NVH du système.
Predicting the in-vehicle noise contribution of components, such as powertrain, road, HVAC and steering system during early development, is tremendously challenging. To avoid endless design iterations, engineers need modular technologies that leverage measured individual component models into full-vehicle noise predictions. This is exactly the scope of component-based TPA. The process starts by characterizing the source loads independently, based on acquired free velocities or blocked forces. Next, using sub-structuring techniques, engineers can study the component-level NVH performance without having to physically create the full vehicle in all its variants. Such early predictions help to avoid issues and allow a more realistic design target setting.
System NVH performance prediction is a robust solution that enables to accurately and rapidly predict the NVH performance of any system at any stage of the development cycle.
You can accurately create or assemble systems in a virtual environment using test and simulation data, easily evaluate effect of modifications or components at different development stages and maximize the usage of all the data in your organization. The user interface is easy-to-use, enabling non experts to accurately predict the final product NVH performance. Our solution allows your development team to deliver excellent NVH performance while keeping development times and costs under control.
Verify noise contributions using a time-domain transfer path analysis model. This model allows you to listen to the recorded sound of the powertrain components, tire friction, wind, and other contributors. It extends the use of TPA models to sound design and sound quality engineering. This process can also be applied to transient events such as engine restart and acceleration pedal tip-in/tip-out.
Predictive pass-by noise engineering allows for the understanding of how various noise sources (engine, exhaust, intake, tires, etc.) contribute to the overall exterior noise level. This method represents the noise sources by a reduced set of acoustic monopoles, in accordance with UNECE Regulation 51.3.
Powertrain NVH engineers will seek to trace the flow of vibro-acoustic energy from the powertrain and identify path contributions in order to analyze the variables that can have an effect on the vibro-acoustic results. TPA allows you to assess several variants and compare and evaluate results. It plays a crucial role in the optimization process of the full vehicle NVH performance.
Road noise is a major contributor to overall interior noise levels. With hybrid or electric vehicles, road noise is often more prominent as it is less or not at all masked by powertrain noise. TPA allows to separate the airborne and structure-borne contributions, as well as front and rear axle and suspension contributions. It helps identify root causes of excessive noise and validate chassis and body modifications with the goal to increase passenger comfort.
Identify the root causes of noise and vibration issues with experimental transfer path analysis. This method provides deep insight into the system’s noise and vibration behavior. It is based on the source-transfer-receiver model and allows setting correct and precise countermeasures. In early development phases, it also helps to set realistic design targets on full system and component levels.
DENSO uses Siemens Digital Industries Software solutions to reduce time needed to make transfer path analysis measurements by 70 percent
See all Success StoriesWebinaire à la demande
Aller au-delà des applications traditionnelles d'analyse de chemin de transfert en utilisant la TPA basée sur le domaine temporel, sur la déformation, sur les composants et la TPA des forces bloquées et basée sur un modèle.
Aller au-delà des applications traditionnelles d'analyse de chemin de transfert en utilisant la TPA basée sur le domaine temporel, sur la déformati...
An educational video explaining the Component-based TPA method.
Help OEMs recognize your value, while helping achieve their vision of the future
Drivetrain noise is less prominent in hybrid and electric vehicles, making noises from other systems more noticeable. This is challenging automotiv...