Innovation et gestion de programmes synchronisée et collaborative pour les nouveaux programmes
Aérospatiale & Défense
Innovation et gestion de programmes synchronisée et collaborative pour les nouveaux programmes
Explorer l’industrieAutomobile et Transports
Integration of mechanical, software and electronic systems technologies for vehicle systems
Explorer l’industrieBiens de consommation & Distribution
Innovation produit grâce à la gestion efficace et intégrée des formulations, du packaging et des procédés de fabrication
Explorer l’industrieÉlectronique & semi-conducteurs
Le développement de nouveaux produits exploite les données pour améliorer la qualité et la rentabilité tout en réduisant les délais de mise sur le marché et les coûts.
Explorer l’industrieÉnergie et services publics
Supply chain collaboration in design, construction, maintenance and retirement of mission-critical assets
Explorer l’industrieHeavy Equipment
Construction, mining, and agricultural heavy equipment manufacturers striving for superior performance
Explore IndustryConstructions mécaniques et équipements lourds
Integration of manufacturing process planning with design and engineering for today’s machine complexity
Explorer cette industrieInsurance & Financial
Visibility, compliance and accountability for insurance and financial industries
Explore IndustrySecteur maritime
Innovation dans la construction navale pour réduire de façon durable le coût de développement des futures flottes
Explorer l’industrieMedia & Telecommunications
Siemens PLM Software, a leader in media and telecommunications software, delivers digital solutions for cutting-edge technology supporting complex products in a rapidly changing market.
Explore IndustryAppareils Médicaux et Produits Pharmaceutiques
« Innovation produit personnalisée » grâce à la digitalisation, pour répondre à la demande du marché et réduire les coûts
Explorer l’industrieSmall & Medium Business
Remove barriers and grow while maintaining your bottom line. We’re democratizing the most robust digital twins for your small and medium businesses.
Explore IndustrySiemens Digital Industries Software Mission Engineering (ME)
Siemens Digital Industries Software Mission Engineering (ME)
Mission engineering (ME) is defined as the deliberate planning, analyzing, organizing and integrating of current and emerging operational and system capabilities to achieve desired warfighting mission effects in the Mission Engineering Guide of the U.S. Department of Defense.
In developing this guide, the DOD sought to standardize mission engineering and empower mission stakeholders with a better common understanding. “The guide will make it easier for the industry and the department to communicate and collaborate across ME efforts by providing users with a set of products to document and portray results that guide, constrain, and inform capability and technology development.”
Digital transformation enables mission engineering in the aerospace and defense industry with technology solutions for managing the interdependencies of end-to-end missions. Without these advancements, mission integration management elements like ME would be exorbitantly cumbersome.
Aerospace engineers use mission engineering to examine and design the interoperability of systems of systems
Mission engineering methodology empowers companies to orchestrate highly technical programs more efficiently and effectively. Digital engineering principles should be used when conducting ME to manage the development of complex systems in relation to critical objectives. This methodology is a natural complement to model-based systems engineering (MBSE).
In the Mission Engineering Guide, the U.S. Department of Defense explains that mission engineering methodology operates on three axes: time, complexity, and analytical rigor. The document identifies several questions used to clarify objectives in the ME process:
What is the mission?
What are its boundaries and how must it interact with other missions?
What are its performance measures?
What are the mission capability gaps?
How can new capabilities change the way we fight?
What do changes in capabilities or systems mean to missions and architectures?
What is the sensitivity of the mission performance to the performance of the constituent technology, products, and capabilities? How do the new capabilities best integrate with, or replace, legacy systems? And how do we optimize that balance to provide the most lethal and affordable integrated capabilities for any particular mission?
A mission engineering platform is beneficial for ME as well as system engineering. ME flows well with system engineering methods used for defining the system compliant with mission needs. Both disciplines share similar methods and taxonomy, with one focused on defining the mission and the other on defining the system.
According to the U.S. Department of Defense, “ME is the technical sub-element of mission integration management that provides engineering products to inform the requirements process, guide prototypes, provide design options and inform investment decisions.” A mission engineering platform supports stakeholders “in formulating problem statements, characterizing missions, identifying mission metrics and using models to analyze missions.”
Mission engineering originated as a sub-discipline of systems engineering within the U.S. Department of Defense. Since being formalized in the mid-2010s, its practice and adoption have expanded into industries beyond defense operations. Because it is a beneficial methodology for companies that position products in the context of complex and evolving operational issues, ME continues to gain traction among systems engineers in organizations with and without ties to the defense industry.
Contactez-nous
Support technique produit
Préférences de communication
Bureaux dans le monde