Innovación y gestión de programas colaborativa y sincronizada para nuevos programas
Sector aeroespacial y defensa
Innovación y gestión de programas colaborativa y sincronizada para nuevos programas
Conocer el sectorAutomotive & Transportation
Integration of mechanical, software and electronic systems technologies for vehicle systems
Conocer el sectorProductos de consumo y comercio minorista
Innovación de productos mediante una gestión eficaz de las formulaciones integradas, el embalaje y los procesos de fabricación
Conoce el sectorComponentes electrónicos y semiconductores
El nuevo proceso de desarrollo de productos aprovecha los datos para mejorar la calidad y la rentabilidad y reducir el tiempo y los costes de comercialización.
Conocer el sectorEnergía y Utilidades
Supply chain collaboration in design, construction, maintenance and retirement of mission-critical assets
Conocer el sectorHeavy Equipment
Construction, mining, and agricultural heavy equipment manufacturers striving for superior performance
Explore IndustryMaquinaria industrial y maquinaria pesada
Integration of manufacturing process planning with design and engineering for today’s machine complexity
Descubra el sectorInsurance & Financial
Visibility, compliance and accountability for insurance and financial industries
Explore IndustrySector naval
Innovación en la construcción naval para reducir de manera sostenible los costes de desarrollo de la flota futura.
Conocer el sectorMedia & Telecommunications
Siemens PLM Software, a leader in media and telecommunications software, delivers digital solutions for cutting-edge technology supporting complex products in a rapidly changing market.
Explore IndustryDispositivos médicos y productos farmacéuticos
Innovación de los productos personalizados mediante la digitalización para satisfacer las exigencias del mercado y reducir los costes.
Conocer el sectorSmall & Medium Business
Remove barriers and grow while maintaining your bottom line. We’re democratizing the most robust digital twins for your small and medium businesses.
Explore IndustryModeling rheological properties and manufacturing simulations
Modeling rheological properties and manufacturing simulations
Bridging the gap between materials discovery and engineering scale-up
Developing new products in the personal care, pharmaceutical, and chemical process industries involves a linked set of processes (the so-called “value chain”), beginning with early-stage discovery of new chemistries and materials, to engineering and eventually to manufacturing. A key challenge in commercializing new materials is the transition from early-stage laboratory discovery to scaling up in engineering and production. Computational methods can help develop and screen thousands of new chemical formulations for new materials, but the scale-up experiments on the most promising handful of formulations is much slower, leading to bottlenecks. In addition, developing new chemistries means that companies may not have data from the past to calibrate artificial intelligence-based development and screening methods.
Register to watch this on-demand webinar where featured speaker Professor Dr. ir. Johannes (Hans) Fraaije presents computational solutions to these problems, including several new algorithms:
Get an in-depth overview of methods and capabilities of the Simcenter CULGI suite of solutions and the importance of increasing the speed of value chains.
Are you faced with the challenge of determining the thermodynamic properties of new materials? With changing requirements for new formulations (e.g., moving away from petrochemical-based materials), this webinar presents novel algorithms, such as coarse-graining, for predicting the thermodynamic characteristics of soft materials. This allows you to gain insight into the material’s behavior and whether your product or process is stable enough to survive the manufacturing process.
Does phase behavior of mixtures or the rheological properties of a complex formulation puzzle you? Computational materials discovery should also include rheology when screening materials. One of the most important aspects in scaling up these formulations is understanding this type of behavior, as the more insight obtained in the early stages will help to increase the speed at which you move along the value chain. Learn about a new method for microrheology--Stokesian Particle Dynamics--and how it can reduce trial and error and create higher confidence during the scale-up stage.
Modeling with multiscale computational chemistry allows for the design and screening of novel materials early in development. Learn how these methods and tools can ease the pain of transitioning from early-stage discovery to the scale-up stage and hear about cases where significant time & cost savings have been realized through reduced trial and error and higher confidence during the scale-up stage.
The following use cases are discussed in more detail:
Register now to learn why materials discovery is critical in the 21st century and how manufacturers can speed up the value chain with integration and digitalization.
Hola Bob (este nombre será reemplazado por el nombre real cuando tenga lugar la visita al sitio web)
Nos gustaría saber más sobre usted.
Se ha producido un error en el envío de la página. Por favor, vuelva a intentarlo.
¿Es la primera vez que se suscribe a los correos electrónicos de Siemens Digital Industries Software? Asegúrese de confirmar su suscripción en el correo electrónico que recibirá en breve.
Hola Bob (este nombre será reemplazado por el nombre real cuando tenga lugar la visita al sitio web)
Podrá acceder a este webinar durante 90 días. Pulse abajo para iniciar la visualización.
Bridging the gap between materials discovery and engineering scale-up
Developing new products in the personal care, pharmaceutical, and chemical process industries involves a linked set of processes (the so-called “value chain”), beginning with early-stage discovery of new chemistries and materials, to engineering and eventually to manufacturing. A key challenge in commercializing new materials is the transition from early-stage laboratory discovery to scaling up in engineering and production. Computational methods can help develop and screen thousands of new chemical formulations for new materials, but the scale-up experiments on the most promising handful of formulations is much slower, leading to bottlenecks. In addition, developing new chemistries means that companies may not have data from the past to calibrate artificial intelligence-based development and screening methods.
Register to watch this on-demand webinar where featured speaker Professor Dr. ir. Johannes (Hans) Fraaije presents computational solutions to these problems, including several new algorithms:
Get an in-depth overview of methods and capabilities of the Simcenter CULGI suite of solutions and the importance of increasing the speed of value chains.
Are you faced with the challenge of determining the thermodynamic properties of new materials? With changing requirements for new formulations (e.g., moving away from petrochemical-based materials), this webinar presents novel algorithms, such as coarse-graining, for predicting the thermodynamic characteristics of soft materials. This allows you to gain insight into the material’s behavior and whether your product or process is stable enough to survive the manufacturing process.
Does phase behavior of mixtures or the rheological properties of a complex formulation puzzle you? Computational materials discovery should also include rheology when screening materials. One of the most important aspects in scaling up these formulations is understanding this type of behavior, as the more insight obtained in the early stages will help to increase the speed at which you move along the value chain. Learn about a new method for microrheology--Stokesian Particle Dynamics--and how it can reduce trial and error and create higher confidence during the scale-up stage.
Modeling with multiscale computational chemistry allows for the design and screening of novel materials early in development. Learn how these methods and tools can ease the pain of transitioning from early-stage discovery to the scale-up stage and hear about cases where significant time & cost savings have been realized through reduced trial and error and higher confidence during the scale-up stage.
The following use cases are discussed in more detail:
Register now to learn why materials discovery is critical in the 21st century and how manufacturers can speed up the value chain with integration and digitalization.