Innovation and collaborative, synchronized program management for new programs
Aerospace & Defense
Innovation and collaborative, synchronized program management for new programs
Explore IndustryAutomotive & Transportation
Integration of mechanical, software and electronic systems technologies for vehicle systems
Explore IndustryConsumer Products & Retail
Product innovation through effective management of integrated formulations, packaging and manufacturing processes
Explore IndustryElectronics & Semiconductors
New product development leverages data to improve quality and profitability and reduce time-to-market and costs
Explore IndustryEnergy & Utilities
Supply chain collaboration in design, construction, maintenance and retirement of mission-critical assets
Explore IndustryHeavy Equipment
Construction, mining, and agricultural heavy equipment manufacturers striving for superior performance
Explore IndustryIndustrial Machinery
Integration of manufacturing process planning with design and engineering for today’s machine complexity
Explore IndustryInsurance & Financial
Visibility, compliance and accountability for insurance and financial industries
Explore IndustryMarine
Shipbuilding innovation to sustainably reduce the cost of developing future fleets
Explore IndustryMedia & Telecommunications
Siemens PLM Software, a leader in media and telecommunications software, delivers digital solutions for cutting-edge technology supporting complex products in a rapidly changing market.
Explore IndustryMedical Devices & Pharmaceuticals
“Personalized product innovation” through digitalization to meet market demands and reduce costs
Explore IndustrySmall & Medium Business
Remove barriers and grow while maintaining your bottom line. We’re democratizing the most robust digital twins for your small and medium businesses.
Explore IndustrySiemens Digital Industries Software Finite Element Analysis (FEA)
Siemens Digital Industries Software Finite Element Analysis (FEA)
Finite element analysis (FEA) is the modeling of products and systems in a virtual environment, for the purpose of finding and solving potential (or existing) structural or performance issues. FEA is the practical application of the finite element method (FEM), which is used by engineers and scientists to mathematically model and numerically solve complex structural, fluid and multiphysics problems. FEA software can be utilized in a wide range of industries, but is most commonly used in the aeronautical, biomechanical and automotive industries.
A finite element (FE) model comprises a system of points, called “nodes”, which form the shape of the design. Connected to these nodes are the finite elements themselves which form the finite element mesh and contain the material and structural properties of the model, defining how it will react to certain conditions. The density of the finite element mesh may vary throughout the material, depending on the anticipated change in stress levels of a particular area. Regions that experience high changes in stress usually require a higher mesh density than those that experience little or no stress variation. Points of interest may include fracture points of previously tested material, fillets, corners, complex detail and high-stress areas.
To simulate the effects of real-world working environments in FEA, various load types can be applied to the FE model, including nodal (forces, moments, displacements, velocities, accelerations, temperature and heat flux), elemental (distributed loading, pressure, temperature and heat flux), as well as acceleration body loads (gravity).
Types of FE analysis include linear statistics, nonlinear statics and dynamics, normal modes, dynamic response, buckling and heat transfer. Typical results calculated by the solver include nodal displacements, velocities and accelerations, as well as elemental forces, strains and stresses.
Predict and improve product performance and reliability
Reduce physical prototyping and testing
Evaluate different designs and materials
Optimize designs and reduce material usage