Innovation and collaborative, synchronized program management for new programs
Aerospace & Defense
Innovation and collaborative, synchronized program management for new programs
Explore IndustryAutomotive & Transportation
Integration of mechanical, software and electronic systems technologies for vehicle systems
Explore IndustryConsumer Products & Retail
Product innovation through effective management of integrated formulations, packaging and manufacturing processes
Explore IndustryElectronics & Semiconductors
New product development leverages data to improve quality and profitability and reduce time-to-market and costs
Explore IndustryEnergy & Utilities
Supply chain collaboration in design, construction, maintenance and retirement of mission-critical assets
Explore IndustryHeavy Equipment
Construction, mining, and agricultural heavy equipment manufacturers striving for superior performance
Explore IndustryIndustrial Machinery
Integration of manufacturing process planning with design and engineering for today’s machine complexity
Explore IndustryInsurance & Financial
Visibility, compliance and accountability for insurance and financial industries
Explore IndustryMarine
Shipbuilding innovation to sustainably reduce the cost of developing future fleets
Explore IndustryMedia & Telecommunications
Siemens PLM Software, a leader in media and telecommunications software, delivers digital solutions for cutting-edge technology supporting complex products in a rapidly changing market.
Explore IndustryMedical Devices & Pharmaceuticals
“Personalized product innovation” through digitalization to meet market demands and reduce costs
Explore IndustrySmall & Medium Business
Remove barriers and grow while maintaining your bottom line. We’re democratizing the most robust digital twins for your small and medium businesses.
Explore IndustryRoad load prediction for durability simulation
Road load prediction for durability simulation
Calculate the displacement of the wheels, based on component loads.
Virtual road load prediction is time-intensive and complicated. It requires engineers to model the correct parameters for the tires, driver, a digitized road, and flexible components in the vehicle model to represent the correct behavior of the vehicle.
This webinar demonstrates how to include test-track measurements in simulation. It explains how to conduct road load prediction in hours instead of days, calculating the wheels’ displacement on a virtual test rig based on internal loads. Once validated, learn how durability simulation helps optimize vehicle performance by predicting the impact of material, geometry, and welding changes.
Defining correct road loads and understanding how they affect individual vehicle components is crucial for successful durability simulation.
Register for the webinar and learn to:
Any small misalliance between the properties of the model and the real vehicle causes drifts in the simulation leading to unrealistic loads. Simcenter grants you earlier access to real-world vehicle loads using test data for road load prediction.
The Simcenter 3D Motion TWR solution integrates test data and high-fidelity 3D vehicle models. A unique iterative technique calculates equivalent drive signals in the wheel centers and avoids the need for modeling complex items, such as a driver, tires and a digitized test track.
Integrated into a single environment, durability simulation engineers can apply sensors on the digital model and use the displacement signals to calculate the effect of road loads on the individual components and interface points.
Once the full vehicle model is validated, durability simulation teams extract components of interest, optimize or evaluate different candidate parts with more advanced simulation and design the best performing component.
This solution goes broader than design optimization and virtual product validation since advanced materials and additive manufacturing can also be integrated. During the webinar, we’ll demonstrate an example of how a component was optimized using additive manufacturing and machine learning to predict local fatigue properties from the real road loads. This transformative approach qualifies for creating lighter and stronger parts.
Dobrý den, Bobe (bude nahrazeno skutečným jménem během skutečné návštěvy webu)
Chceme se o Vás dozvědět více.
Při odesílání dat se vyskytla chyba. Zkuste to znovu později.
Přihlašujete se poprvé k odběru e-mailů od Siemens Digital Industries Software? Nezapomeňte potvrdit svůj zájem v e-mailu, který za chvíli obdržíte.
Dobrý den, Bobe (bude nahrazeno skutečným jménem během skutečné návštěvy webu)
K tomuto webináři máte přístup 90 dní. Kliknutím zde zahájíte prohlížení.
Calculate the displacement of the wheels, based on component loads.
Virtual road load prediction is time-intensive and complicated. It requires engineers to model the correct parameters for the tires, driver, a digitized road, and flexible components in the vehicle model to represent the correct behavior of the vehicle.
This webinar demonstrates how to include test-track measurements in simulation. It explains how to conduct road load prediction in hours instead of days, calculating the wheels’ displacement on a virtual test rig based on internal loads. Once validated, learn how durability simulation helps optimize vehicle performance by predicting the impact of material, geometry, and welding changes.
Defining correct road loads and understanding how they affect individual vehicle components is crucial for successful durability simulation.
Register for the webinar and learn to:
Any small misalliance between the properties of the model and the real vehicle causes drifts in the simulation leading to unrealistic loads. Simcenter grants you earlier access to real-world vehicle loads using test data for road load prediction.
The Simcenter 3D Motion TWR solution integrates test data and high-fidelity 3D vehicle models. A unique iterative technique calculates equivalent drive signals in the wheel centers and avoids the need for modeling complex items, such as a driver, tires and a digitized test track.
Integrated into a single environment, durability simulation engineers can apply sensors on the digital model and use the displacement signals to calculate the effect of road loads on the individual components and interface points.
Once the full vehicle model is validated, durability simulation teams extract components of interest, optimize or evaluate different candidate parts with more advanced simulation and design the best performing component.
This solution goes broader than design optimization and virtual product validation since advanced materials and additive manufacturing can also be integrated. During the webinar, we’ll demonstrate an example of how a component was optimized using additive manufacturing and machine learning to predict local fatigue properties from the real road loads. This transformative approach qualifies for creating lighter and stronger parts.
User event | Registration now open!
Realize LIVE returns in person in 2022, uniting the Siemens global user community around a common mission: To co-create a better world.
Join 3,500+ of your peers to advance innovation, engineer the circular economy, and drive change that’s as sustainable as it is profitable.